Citation: Yu-xia Liu, Lie Chen, Zi-guang Zhao, Ruo-chen Fang, Ming-jie Liu. Design and Synthesis of Bioinspired Multiscale Hydrogels: from Interface to Three-dimensional Network[J]. Acta Polymerica Sinica, ;2018, 0(9): 1155-1174. doi: 10.11777/j.issn1000-3304.2018.18108 shu

Design and Synthesis of Bioinspired Multiscale Hydrogels: from Interface to Three-dimensional Network

  • Corresponding author: Ming-jie Liu, liumj@buaa.edu.cn
  • Received Date: 18 April 2018
    Revised Date: 9 May 2018
    Available Online: 6 September 2018

  • Hydrogels are three-dimensional polymeric networks with large amount of water as the dispersion medium. The hydrogen bonds between polymer networks and water bind water in the networks, thus making the system lose its fluidity and transform quasi-solid substances. Hydrogel materials can greatly change their shape and volume in response to diverse stimuli, and thus have attracted considerable attention due to their promising applications in soft robots, flexible electronics and sensors. In biological soft tissues, the existence of multi-scale structures, for example, surface micro/nano structures and ordered three-dimensional network structures is crucial to provide biological materials with functionalities, including self-cleaning, freezing tolerance, adaptivity and excellent mechanical performance. Taking inspiration from nature, researchers have increasingly developed a series of bioinspired multiscale hydrogels with high adaptability to various mechanical and environmental conditions. In this review, we first introduce the history of hydrogel. Secondly, the relationship between natural gel materials and their excellent function are summarized. Then the recent researches of bioinspired multi-scale hydrogels focusing on hydrogel ’s surfaces and three-dimensional network designing are discussed. As we mentioned, surface chemical/physical modification and micro/nano structure construction are typical strategies, which can adjust the wettability and adhesion behaviors of hydrogel surface, thus expanding the application of hydrogel in the fields of biomedicine and marine antifouling. In addition, the strategies of three-dimensional networks’ designing, such as introducing non-covalent cross-linking, designing ordered network structure and fabricating heterogeneous networks, are introduced respectively. These strategies can give hydrogels excellent properties including self-healing, anisotropy, high strength, shape memory and freezing tolerance. The development of these biomimetic multiscale hydrogels has expanded the application of hydrogel materials in the fields of wearable devices, software robots, and complex environments. Finally, the current challenges about design of hydrogels’ network, the dispersion of heterogeneous networks, the non-destructive characterization of hydrogels and future perspectives in this field will also be discussed.
  • 加载中
    1. [1]

      Calvert P. Adv Mater, 2009, 21(7): 743 − 756

    2. [2]

      Vermonden T, Censi R, Hennink W E. Chem Rev, 2012, 112(5): 2853 − 2888

    3. [3]

      Seliktar D. Science, 2012, 336(6085): 1124 − 1128

    4. [4]

      VanBemmelen J M. Z Anorg Chem, 1894, 5: 466 − 483

    5. [5]

      Wichterle O, Lím D. Nature, 1960, 185(4706): 117 − 118

    6. [6]

      Refojo M F, Yasuda H. J Appl Polym Sci, 1965, 9(7): 2425 − 2435

    7. [7]

      Hicks G P, Updike S J. Anal Chem, 1966, 38(6): 726 − 730

    8. [8]

      Freeman A, Aharonowitz Y. Biotechnol Bioeng, 1981, 23(12): 2747 − 2759

    9. [9]

      Dong L C, Yan Q, Hoffman A S. J Control Release, 1992, 19(1): 171 − 177

    10. [10]

      Yu L, Ding J D. Chem Soc Rev, 2008, 37(8): 1473 − 1481

    11. [11]

      Chen L, Li X Q, Cao L P, Li X L, Meng J R, Dong J, Yu L, Ding J D. Chinese J Polym Sci, 2016, 34(2): 147 − 163

    12. [12]

      Haraguchi K, Takehisa T, Ebato M. Biomacromolecules, 2006, 7(11): 3267 − 3275

    13. [13]

      Huang T, Xu H G, Jiao K X, Zhu L P, Brown H R, Wang H L. Adv Mater, 2007, 19(12): 1622 − 1626

    14. [14]

      Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Adv Mater, 2003, 15(14): 1155 − 1158

    15. [15]

      Okumura Y, Ito K. Adv Mater, 2001, 13(7): 485 − 487

    16. [16]

      Wang Q, Mynar J L, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T. Nature, 2010, 463(7279): 339 − 343

    17. [17]

      Zhao Z G, Fang R C, Rong Q F, Liu M J. Adv Mater, 2017, 29(45): 1703045

    18. [18]

      Han L, Grodzinsky A J, Ortiz C. Annu Rev Mater Res, 2011, 41: 133 − 168

    19. [19]

      Liu M J, Wang S T, Wei Z X, Song Y L, Jiang L. Adv Mater, 2009, 21(6): 665 − 669

    20. [20]

      Moellering E R, Muthan B, Benning C. Science, 2010, 330(6001): 226 − 228

    21. [21]

      Ma S H, Scaraggi M, Wang D A, Wang X L, Liang Y M, Liu W M, Dini D, Zhou F. Adv Funct Mater, 2015, 25(47): 7366 − 7374

    22. [22]

      Han L, Lu X, Liu K Z, Wang K F, Fang L M, Weng L T, Zhang H P, Tang Y H, Ren F Z, Zhao C C, Sun G X, Liang R, Li Z J. ACS Nano, 2017, 11(3): 2561 − 2574

    23. [23]

      Mredha M T I, Guo Y Z, Nonoyama T, Nakajima T, Kurokawa T, Gong J P. Adv Mater, 2018, 30(9): 1704937

    24. [24]

      Gao H N, Zhao Z G, Cai Y D, Zhou J J, Hua W D, Chen L, Wang L, Zhang J Q, Han D, Liu M J, Jiang L. Nat Commun, 2017, 8: 15911

    25. [25]

      Chen L, Yin Y A, Liu Y X, Lin L, Liu M J. J. Chinese J Polym Sci, 2017, 35(10): 1181 − 1193

    26. [26]

      Cai Y, Lin L, Xue Z X, Liu M J, Wang S T, Jiang L. Adv Funct Mater, 2014, 24(6): 809 − 816

    27. [27]

      Scholz I, Barnes W J, Smith J M, Baumgartner W. J Exp Biol, 2009, 212(2): 155 − 162

    28. [28]

      Cai Y, Lu Q H, Guo X L, Wang S T, Qiao J L, Jiang L. Adv Mater, 2015, 27(28): 4162 − 4168

    29. [29]

      Chen H W, Zhang P F, Zhang L W, Liu H L, Jiang Y, Zhang D Y, Han Z W, Jiang L. Nature, 2016, 532(7597): 85 − 89

    30. [30]

      Kerin A J, Wisnom M R, Adams M A. Proc Inst Mech Eng Part H, 1998, 212(4): 273 − 280

    31. [31]

      Ker R F. J Exp Biol, 1999, 202(23): 3315 − 3324

    32. [32]

      Johnson M A, Polgar J, Weightman D, Appleton D. J Neurol Sci, 1973, 18(1): 111 − 129

    33. [33]

      Wakelam M J O. Biochem J, 1985, 228(1): 1 − 12

    34. [34]

      Jana S, Levengood S K L, Zhang M Q. Adv Mater, 2016, 28(48): 10588 − 10612

    35. [35]

      Yao X, Chen L, Ju J, Li C H, Tian Y, Jiang L, Liu M J. Adv Mater, 2016, 28(34): 7383 − 7389

    36. [36]

      Chen L, Yao X, Gu Z D, Zheng K K, Zhao C Q, Lei W W, Rong Q F, Lin L, Wang J B, Jiang L, Liu M J. Chem Sci, 2017, 8(3): 2010 − 2016

    37. [37]

      Lopez-Alemany A, Compan V, Refojo M F. J Biomed Mater Res, 2002, 63(3): 319 − 325

    38. [38]

      Lai Y C, Friends G D. J Biomed Mater Res, 1997, 35(3): 349 − 356

    39. [39]

      Deng X D, Korogiannaki M, Rastegari B, Zhang J F, Chen M S, Fu Q, Sheardown H, Filipe C D M, Hoare T. ACS Appl Mater Interfaces, 2016, 8(34): 22064 − 22073

    40. [40]

      Ashtiani M K, Zandi M, Shokrollahi P, Ehsani M, Baharvand H. Polym Advan Technol, 2018, 29(4): 1227 − 1233

    41. [41]

      Huang X, Sun Y J, Soh S. Adv Mater, 2015, 27(27): 4062 − 4068

    42. [42]

      Liu M J, Wang S T, Jiang L. Nat Rev Mater, 2017, 2(7): 17036

    43. [43]

      Xue Z X, Wang S T, Lin L, Chen L, Liu M J, Feng L, Jiang L. Adv Mater, 2011, 23(37): 4270 − 4273

    44. [44]

      Liu X L, Zhou J, Xue Z X, Gao J, Meng J X, Wang S T, Jiang L. Adv Mater, 2012, 24(25): 3401 − 3405

    45. [45]

      Lin L, Yi H, Guo X L, Zhang P C, Chen L, Hao D Z, Wang S T, Liu M J, Jiang L. Sci China Chem, 2017, 61(1): 64 − 70

    46. [46]

      Ma S H, Scaraggi M, Lin P, Yu B, Wang D A, Dini D, Zhou F. J Phys Chem C, 2017, 121(15): 8452 − 8463

    47. [47]

      Heisenberg C P, Bellaiche Y. Cell, 2013, 153(5): 948 − 962

    48. [48]

      Watson J D, Crick F H. Nature, 1953, 171(4356): 737 − 738

    49. [49]

      Zhang S, Holmes T, Lockshin C, Rich A. P Natl Acad Sci USA, 1993, 90(8): 3334 − 3338

    50. [50]

      Li W, Pang Q, Jiang Y S, Zhai Z H, Zhou Z R. Tribol Lett, 2012, 48(3): 293 − 304

    51. [51]

      Lei Z Y, Wu P Y. Nat Commun, 2018, 9: 1134

    52. [52]

      Azevedo S, Costa A M S, Andersen A, Choi I S, Birkedal H, Mano J F. Adv Mater, 2017, 29(28): 1700759

    53. [53]

      Zhao Z G, Xu Y C, Fang R C, Liu M J. Chinese J Polym Sci, 2017, 32: 1 − 14

    54. [54]

      Chaffey N. Trends Plant Sci, 2000, 5(9): 360 − 362

    55. [55]

      Elliott G F, Rome E M. Mol Cryst Liq Cryst, 1969, 8(1): 215 − 218

    56. [56]

      Coppin C M, Leavis P C. Biophys J, 1992, 63(3): 794 − 807

    57. [57]

      Liu M J, Ishida Y, Ebina Y, Sasaki T, Hikima T, Takata M, Aida T. Nature, 2015, 517(7532): 68 − 72

    58. [58]

      Ahadian S, Yamada S, Ramón-Azcón J, Estili M, Liang X B, Nakajima K, Shiku H, Khademhosseini A, Matsue T. Acta Biomater, 2016, 31: 134 − 143

    59. [59]

      Lu Q, Bai S M, Ding Z Z, Guo H, Shao Z Z, Zhu H S, Kaplan D L. Adv Mater Interfaces, 2016, 3(8): 1500687

    60. [60]

      Yang W, Furukawa H, Gong J P. Adv Mater, 2008, 20(23): 4499 − 4503

    61. [61]

      Tycko R, Blanco F J, Ishii Y. J Am Chem Soc, 2000, 122(38): 9340 − 9341

    62. [62]

      Kim S H, Im S K, Oh S J, Jeong S, Yoon E S, Lee C J, Choi N, Hur E M. Nat Commun, 2017, 8: 14346

    63. [63]

      Nishikawa E, Finkelmann H, Brand H R. Macromol Rapid Commun, 1997, 18(2): 65 − 71

    64. [64]

      Kundler I, Finkelmann H. Macromol Rapid Commun, 1995, 16(9): 679 − 686

    65. [65]

      Lin P, Zhang T T, Wang X L, Yu B, Zhou F. Small, 2016, 12(32): 4386 − 4392

    66. [66]

      Liu M J, Ishida Y, Ebina Y, Sasaki T, Aida T. Nat Commun, 2013, 4: 2029

    67. [67]

      Si Y, Wang L H, Wang X Q, Tang N, Yu J Y, Ding B. Adv Mater, 2017, 29(24): 1700339

    68. [68]

      Liu M J, Jiang L. Sci China Mater, 2016, 59(4): 239 − 246

    69. [69]

      Zang D M, Yi H, Gu Z D, Chen L, Han D, Guo X L, Wang S T, Liu M J, Jiang L. Adv Mater, 2017, 29(2): 1602869

    70. [70]

      Salt R W. Nature, 1959, 184(4696): 1426 − 1426

    71. [71]

      Thomashow M F. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571 − 599

    72. [72]

      Moellering E R, Muthan B, Benning C. Science, 2010, 330(6001): 226 − 228

    73. [73]

      Takahashi D, Imai H, Kawamura Y, Uemura M. Cryobiology, 2016, 72(2): 123 − 134

    74. [74]

      Martz F, Sutinen M L, Kiviniemi S, Palta J P. Tree Physiol, 2006, 26(6): 783 − 790

    75. [75]

      Rong Q F, Lei W W, Chen L, Yin Y A, Zhou J J, Liu M J. Angew Chem Int Ed, 2017, 129(45): 14347 − 14351

    76. [76]

      Zhao Z G, Zhang K J, Liu Y X, Zhou J J, Liu M J. Adv Mater, 2017, 29(33): 1701695

    77. [77]

      Zhao Z G, Liu Y X, Zhang K J, Zhuo S Y, Fang R C, Zhang J Q, Jiang L, Liu M J. Angew Chem Int Ed, 2017, 56(43): 13464 − 13469

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    3. [3]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    6. [6]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    7. [7]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    8. [8]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    9. [9]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    10. [10]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    11. [11]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    12. [12]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    13. [13]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    14. [14]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    15. [15]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    16. [16]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    17. [17]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    18. [18]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    19. [19]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    20. [20]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

Metrics
  • PDF Downloads(0)
  • Abstract views(323)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return