Citation: Hao-yu Yu, Jian-wei Shao, Dong Chen, Shi-chao Wang, Li Wang, Wan-tai Yang. Synthesis of Thioether Compounds and Their Application in Initiating/Controlling the Radical Polymerization of Styrene[J]. Acta Polymerica Sinica, ;2018, 0(11): 1422-1429. doi: 10.11777/j.issn1000-3304.2018.18107 shu

Synthesis of Thioether Compounds and Their Application in Initiating/Controlling the Radical Polymerization of Styrene

  • With inspiration from the structure of macromolecular thioether generated in the 9H-xanthene-9-thione mediated radical polymerization, five thioethers containing 9-alkyl-9-phenylthio/methylthio-xanthene structure were synthesized. Xanthydrol was selected as the precursor for two 9-substituted xanthene intermediates. 9-(Phenylthio)-9H-xanthene was obtained via a condensation reaction between xanthydrol and thiophenol in the presence of perchloric acid as catalyst. 9-(Methylthio)-9H-xanthene was obtained via the thioetherification of the chlorinated product of xanthydrol with sodium methyl mercaptide. The sulfurated intermediates were deprotonated by n-butyl lithium, and transformed into five target products via substitution reactions with three alkyl halides individually. 1H-NMR, 13C-NMR, FTIR and UV-Vis analyses were conducted to confirm and characterize the thioethers. Afterwards, a systematic study on the polymerization behavior of styrene (St) initiated by the thioethers was carried out in the absence and presence of a thermal initiator. Bulk polymerizations of St were initiated successfully by the thioethers at 80 °C with relatively low monomer conversions, and the reactions exhibited uncontrolled polymerization behaviors without obvious increase in number-average molecular weight (Mn) in the polymerization process with the PDI of polymeric products above 3.0. However, when the thioethers were used together with 2,2'-azobis(2,4-dimethyl)valeronitrile (ABVN) in the solution polymerization of St in toluene at 65 °C, higher monomer conversions compared with those of bulk polymerization and certain controllability could be achieved, reflected by a linear increase in Mn with conversion. Besides, the effects of molar ratio of ABVN to thioether and reaction temperature on the polymerization behavior of St were investigated in detail. A reduction in the molar ratio of ABVN to thioether would cause a reduction in the concentration of propagating radicals, and lead to a decrease in monomer conversion. But the PDI of polymeric product narrowed down indicating a controllable polymerization. Furthermore, elevated reaction temperature brought about an increased concentration of chain radical, and resulted in a relatively low Mn with a broadened PDI.
  • 加载中
    1. [1]

      Mishra A K, Choi C, Maiti S, Seo Y, Lee K S, Kim E, Kim J K. Polymer, 2018, 139: 68 − 75

    2. [2]

      Kutcherlapati S R, Koyilap R, Jana T. J Polym Sci, Part A: Polym Chem, 2018, 56: 365 − 375

    3. [3]

      Díaz-Silvestre S, Saldívar-Guerra E, Rivera-Vallejo C, Thomas C S, Cabello-Romero J, Guerrero-Santos R, Jiménez-Regalado E. Polym Bull, 2018, 75: 891 − 907

    4. [4]

      Semsarzadeh M A, Sabzevari A. J Appl Polym Sci, 2018, 135: 46057

    5. [5]

      Bensabeh N, Ronda J C, Galia M, Cadiz V, Lligadas G, Percec V. Biomacromolecules, 2018, 19: 1256 − 1268

    6. [6]

      Chen C, Kong F, Wei X, Thang S H. Chem Commun, 2017, 53: 10776 − 10779

    7. [7]

      Matyjaszewski K, Tsarevsky N V. J Am Chem Soc, 2014, 136: 6513 − 6533

    8. [8]

      Qu L, Wu Y, Sun P, Zhang K, Liu Z. Polymer, 2017, 114: 36 − 43

    9. [9]

      Qi Y, Perepichka I, Song Z, Varshney S K. e-Polymers, 2018, 18: 197 − 203

    10. [10]

      Fu X, Yuan Y, Chen X, Xiao Y, Wang J, Zhou C, Lei J. J Appl Polym Sci, 2017, 134(40): 45379

    11. [11]

      Lee T, Chae M, Lee C, Jung J, Kumar M A, Mohammad-Abdul K, Choi J E, Song J K, Paik H J. Sci Adv Mater, 2018, 10(1): 78 − 84

    12. [12]

      Hawker C J, Bosman A W, Harth E. Chem Rev, 2001, 101(12): 3661 − 3688

    13. [13]

      Matyjaszewski K, Xia J. Chem Rev, 2001, 101(9): 866 − 868

    14. [14]

      Hill M R, Carmean R N, Sumerlin B S. Macromolecules, 2015, 48(16): 5459 − 5469

    15. [15]

      Zheng X, Yue M, Yang P, Li Q, Yang W. Polym Chem, 2012, 3: 1982 − 1986

    16. [16]

      Huang X, Wang L, Yang W P. Polym Chem, 2015, 6: 6664 − 6670

    17. [17]

      Yao C, Wang L, Yang W. RSC Adv, 2016, 6: 69743 − 69747

    18. [18]

      Toy A A, Chaffey-Millar H, Davis T P, Stenzel M H, Izgorodina E I, Coote M L, Barner-Kowollik C. Chem Commun, 2006, 8: 835 − 837

    19. [19]

      Chaffey-Millar H, Izgorodina E I, Barner-Kowollik C, Coote M L. J Chem Theory Comput, 2006, 2: 1632 − 1645

    20. [20]

      Junkers T, Stenzel M H, Davis T P, Barner-Kowollik C. Macromol Rapid Commun, 2007, 28: 746 − 753

    21. [21]

      Günzler F, Junkers T, Barner-Kowollik C. J Polym Sci, Part A: Polym Chem, 2010, 47: 1864 − 1876

    22. [22]

      Junkers T, Delaittre G, Chapman R, Günzler F, Chernikova E, Barner-Kowollik C. Macromol Rapid Commun, 2012, 33: 984 − 990

    23. [23]

      Bolton J R, Chen K S, Lawrence A H, Mayo P D. J Am Chem Soc, 1975, 97: 1832 − 1837

    24. [24]

      Scaiano J C, Ingold K U. J Am Chem Soc, 1976, 98: 4727 − 4732

    25. [25]

      Brunton G, Gray J A, Griller D, Barclay L R C, Ingold K U. J Am Chem Soc, 1978, 100: 4197 − 4200

    26. [26]

      Naohisa O, Yoshinobu I, Jun-Ichi S, Akira A. ACS Med Chem Lett, 2015, 6: 1004 − 1009

    27. [27]

      Wang F, Good J D, Rath O, Kozielski F. J Med Chem, 2012, 55: 1511 − 1525

    28. [28]

      Divakar K J, Mottoh A, Reese C B, Sanghvi Y S. J Chem Soc Perkin Trans I, 1990: 969 − 974

    29. [29]

      Jahn-Hofmann K, Engels J. Helv Chim Acta, 2004, 87: 2812 − 2828

    30. [30]

      Good J A D, Wang F, Rath O, Kozielski F. J Med Chem, 2013, 56: 1878 − 1893

    31. [31]

      Wan D, Fu Q, Huang J. J Appl Polym Sci, 2006, 101: 509 − 514

  • 加载中
    1. [1]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    2. [2]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    3. [3]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    4. [4]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    5. [5]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    6. [6]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    7. [7]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    8. [8]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    11. [11]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    12. [12]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    13. [13]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    14. [14]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    15. [15]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    16. [16]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    19. [19]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    20. [20]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

Metrics
  • PDF Downloads(0)
  • Abstract views(138)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return