Citation: Xing Wu, Chen Jiang, Na Zhang, Fang Chen, Wei Bai, Ru-ke Bai. Preparation of Few-layered Organic-silica Hybrid Nanomaterials by Two-dimensional Self-assembly and Polymerization[J]. Acta Polymerica Sinica, ;2018, 0(12): 1507-1513. doi: 10.11777/j.issn1000-3304.2018.18104 shu

Preparation of Few-layered Organic-silica Hybrid Nanomaterials by Two-dimensional Self-assembly and Polymerization

  • It is still a challenge to prepare single-layered or few-layered organic-silica hybrid nanomaterials now. In this study, we designed and synthesized an amphiphilic organosilane (PABI) with phenyl urea and carboxyl groups, and investigated its two-dimensional self-assembly and polymerization. The spontaneous formation of few-layered organic-silica hybrid nanomaterials was driven by synergetic association of the hydrophobic interactions, π-π stacking interactions, hydrogen-bond interactions, electrostatic repulsion and hydrolytic condensation of the precursor under the appropriate conditions. The results indicated that the two-dimensional self-assembly and the polymerization were related to the experimental conditions, such as the medium, the type and the content of the base. The structure of the hybrid nanomaterials was demonstrated by nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FTIR) and 29Si cross-polarization magic-angle spinning nuclear magnetic resonance (CP-MAS 29Si-NMR). The morphology of the hybrid nanomaterials was confirmed by electron microscopy. Two or three layered organic-silica hybrid nanomaterials were obtained by two-dimensional self-assembly and polymerization of PABI in water when using 1,1,3,3-tetramethylguanidine (TMG) as a base under suitable condition (mole ratio of TMG to PABI was 1.1:1 or 1.5:1). The laminated sheet of the materials, with lateral size ranging from several hundred nanometers to several micrometers and thickness of 6 – 9 nm, was demonstrated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). However, when the content of TMG (mole ratio of TMG to PABI was 2:1) was too high, irregular aggregates were formed. In addition, irregular hybrid materials were obtained when organic solvents, such as DMF, DMSO, THF and MeOH, were respectively added to water. Moreover, when trimethylamine (TEA) and sodium hydroxide (NaOH) were used as bases, thick laminated sheets were obtained, and the result was consistent with X-ray diffraction spectrogram (XRD). These results are of great significance for preparation of few-layered or single-layered organic-silica hybrid nanomaterials.
  • 加载中
    1. [1]

      Fahmi A, Pietsch T, Mendoza C, Cheval N. Mater Today, 2009, 12(5): 44 − 50  doi: 10.1016/S1369-7021(09)70159-2

    2. [2]

      Lambert S, Tran K Y, Arrachart G, Noville F, Henrist C, Bied C, Moreau J J E, Man M W C, Heinrichs B. Micropor Mesopor Mat, 2008, 115(3): 609 − 617  doi: 10.1016/j.micromeso.2008.03.003

    3. [3]

      Sanchez C, Belleville P, Popall M, Nicole L. Chem Soc Rev, 2011, 40(2): 696 − 753  doi: 10.1039/c0cs00136h

    4. [4]

      Wang F K, Lu X, He C. J Mater Chem, 2011, 21(9): 2775 − 2782  doi: 10.1039/C0JM02785E

    5. [5]

      Yu X, Zhong S, Li X, Tu Y, Wang S, Horn R M V, Ni C, Pochan D J, Quirk R P, Wesdemiotis C, Zhang W B, Cheng S Z D. J Am Chem Soc, 2010, 132(47): 16741 − 16744  doi: 10.1021/ja1078305

    6. [6]

      Toyodome H, Kaneko Y, Shikinaka K, Iyi L. Polymer, 2012, 53(26): 6021 − 6026  doi: 10.1016/j.polymer.2012.10.052

    7. [7]

      Chemtob A, Ni L, Croutxé-Barghorn C, Boury B. Chem Eur J, 2014, 20(7): 1790 − 1806  doi: 10.1002/chem.v20.7

    8. [8]

      Mehdi A, Reye C, Corriu R. Chem Soc Rev, 2011, 40(2): 563 − 574  doi: 10.1039/B920516K

    9. [9]

      Shimojima A, Kuroda K. Chem Rec, 2006, 6(2): 53 − 63  doi: 10.1002/(ISSN)1528-0691

    10. [10]

      Kuroda K, Shimojima A, Kawahara K, Wakabayashi R, Tamura Y, Asakura Y, Kitahara M. Chem Mater, 2013, 26(1): 211 − 220

    11. [11]

      Croutxé-Barghorn C, Chemtob A, Ni L, Deroche I. Polym Int, 2017, 66(5): 640 − 646  doi: 10.1002/pi.5300

    12. [12]

      Besson E, Mehdi A, Reyé C, Gaveaub P, Corriua R J P. Dalton Trans, 2010, 39(32): 7534 − 7539  doi: 10.1039/c0dt00117a

    13. [13]

      Jiang J, Lima O V, Pei Y, Zeng X C, Tan L, Forsythe E. J Am Chem Soc, 2009, 131(3): 900 − 901  doi: 10.1021/ja808103h

    14. [14]

      Besnard R, Arrachart G, Cambedouzou J, Pellet-Rostaing S. RSC Adv, 2015, 5(71): 57521 − 57531  doi: 10.1039/C5RA06944K

    15. [15]

      Besnard R, Arrachart G, Cambedouzou J, Pellet-Rostaing S. Langmuir, 2016, 32(18): 4624 − 4634  doi: 10.1021/acs.langmuir.6b00589

    16. [16]

      Mouawia R, Mehdi A, Reyé C, Corriu R. J Mater Chem, 2007, 17(7): 616 − 618  doi: 10.1039/b618228c

    17. [17]

      Mouawia R, Mehdi A, Reyé C, Corriu R J P. J Mater Chem, 2008, 18(17): 2028 − 2035  doi: 10.1039/b719162f

    18. [18]

      Besson E, Mehdi A, Chollet H, Réyé C, Guilard R, Corriu R J P. J Mater Chem, 2008, 18(11): 1193 − 1195  doi: 10.1039/b719635k

    19. [19]

      Jiang J, Lima O V, Pei Y, Jiang Z, Chen Z, Yu C, Wang J, Zeng X C, Forsythe E, Tan L. ACS Nano, 2010, 4(7): 3773 − 3780  doi: 10.1021/nn100273m

    20. [20]

      Li H, Kang J, Yang J, Wu B. J Phys Chem C, 2016, 120(30): 16907 − 16912  doi: 10.1021/acs.jpcc.6b01312

    21. [21]

      Alauzun J, Mehdi A, Reyé C, Corriu R. J Mater Chem, 2005, 15(8): 841 − 843  doi: 10.1039/B416157B

    22. [22]

      Ni B, Huang M, Chen Z, Chen Y, Hsu C, Li Y, Pochan D, Zhang W, Cheng S Z D, Dong X. J Am Chem Soc, 2015, 137(4): 1392 − 1395  doi: 10.1021/ja511694a

    23. [23]

      Barboiu M, Cerneaux S, van der Lee A, Vaughan G. J Am Chem Soc, 2004, 126(11): 3545 − 3550  doi: 10.1021/ja039146z

    24. [24]

      Zhang N, Wang T, Wu X, Jiang C, Zhang T, Jin B, Ji H, Bai W, Bai R. ACS Nano, 2017, 11(7): 7223 − 7229  doi: 10.1021/acsnano.7b03109

    25. [25]

      Li Z, Tang M, Dai J, Wang T, Wang Z, Bai W, Bai R. Macromolecules, 2017, 50(11): 4292 − 4299  doi: 10.1021/acs.macromol.7b00668

  • 加载中
    1. [1]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    2. [2]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    3. [3]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    4. [4]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    5. [5]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    6. [6]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    7. [7]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    8. [8]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    9. [9]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    10. [10]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    11. [11]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    16. [16]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    17. [17]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    20. [20]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

Metrics
  • PDF Downloads(0)
  • Abstract views(137)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return