Citation: Liu-qiao Zhang, Zhi-hao Huang, Zheng-biao Zhang, Xiu-lin Zhu. Synthesis and Application of Sequence-controlled Polymers[J]. Acta Polymerica Sinica, ;2018, 0(9): 1144-1154. doi: 10.11777/j.issn1000-3304.2018.18101 shu

Synthesis and Application of Sequence-controlled Polymers

  • Corresponding author: Zheng-biao Zhang, zhangzhengbiao@suda.edu.cn
  • Received Date: 9 April 2018
    Revised Date: 2 May 2018
    Available Online: 30 July 2018

  • Sequence-controlled polymers are those with ordered units along their chains. The precision sequence of biological polymers, such as nucleic acid and peptides, plays a crucial role on physiological and sophisticated functions. Inspired by this, the synthesis of sequence-controlled polymers, that is, the placement of specific functional groups at desired positions on the polymer chain, has become one of the ultimate goals of polymer chemists, and received increasing attention in recent years. Up to date, there are a variety of methods to synthesize sequence-controlled polymers based on the step-growth and chain-growth polymerization mechanisms. Compared to the step-growth polymerization, the chain-growth polymerization is much more challenging to achieve sequence-controlled polymers because of the high activity and low propagating selectivity of the growing active center. Therefore, sequence-controlled polymerization is also considered as the " Holy Grail” in the field of polymer synthesis. Although a variety of methods have been developed to regulate polymer sequences, the pursuit of simple and efficient methods toward sequence-controlled polymerization has never stopped. This feature article summarizes the recent progresses on the synthesis of sequence-controlled polymers, and highlights our group’s research in this area. Firstly, we built " supramolecular monomer” by exploiting the weak intermolecular hydrogen-bond interactions to create sequences with alternating feature. We also developed a " latent monomer” strategy based on the temperature-dependent furan/maleimide Diels-Alder reaction, and diverse sequence-controlled polymers were thus readily created. Moreover, a novel chemical route, based on orthogonal chain end deprotection and thiol-maleimide Michael addition, was developed in our group toward the monodisperse and sequence-defined polymers. Finally, the potential applications of the sequence-controlled polymers are also summarized and prospected.
  • 加载中
    1. [1]

      Lutz J F. Polym Chem, 2010, 1(1): 55 − 62

    2. [2]

      Badi N, Lutz J F. Chem Soc Rev, 2009, 38(12): 3383 − 3390

    3. [3]

      Nakatani K, Ogura Y, Koda Y, Terashima T, Sawamoto M. J Am Chem Soc, 2012, 134(9): 4373 − 4383

    4. [4]

      Matyjaszewski K, Ziegler M J, Arehart S V, Greszta D, Pakula T. J Phys Org Chem, 2000, 13(12): 775 − 786

    5. [5]

      Kim J, Mok M M, Sandoval R W, Woo D J, Torkelson J M. Macromolecules, 2006, 39(18): 6152 − 6160

    6. [6]

      Luo Y W, Guo Y L, Gao X, Li B G, Xie T. Adv Mater, 2013, 25(5): 743 − 748

    7. [7]

      Mok M M, Kim J, Torkelson J M. J Polym Sci, Part B: Polym Phys , 2008, 46(1): 48 − 58

    8. [8]

      Aitken B S, Buitrago C F, Heffley J D, Lee M, Gibson H W, Winey K I, Wagener K B. Macromolecules, 2012, 45(2): 681 − 687

    9. [9]

      Tan L C, Zhou W H, Huang Y L, Chen Y W. J Macromol Sci B, 2014, 53(7): 1231 − 1243

    10. [10]

      Weiss J, Li A, Wischerhoff E, Laschewsky A. Polym Chem, 2012, 3(2): 352 − 361

    11. [11]

      Rosales A M, McCulloch B L, Zuckermann R N, Segalman R A. Macromolecules, 2012, 45(15): 6027 − 6035

    12. [12]

      Bazzi H S, Bouffard J, Sleiman H F. Macromolecules, 2003, 36(21): 7899 − 7902

    13. [13]

      Murnen H K, Khokhlov A R, Khalatur P G, Segalman R A, Zuckermann R N. Macromolecules, 2012, 45(12): 5229 − 5236

    14. [14]

      Lutz J F. Macromol Rapid Commun, 2017, 38(24): 1700582 − 1700593

    15. [15]

      Matyjaszewski K, Xia J. Chem Rev, 2001, 101(9): 2921 − 2990

    16. [16]

      Kamigaito M, Ando T, Sawamoto M. Chem Rev, 2001, 101(12): 3689 − 3746

    17. [17]

      Hawker C J, Bosman A W, Harth E. Chem Rev, 2001, 101(12): 3661 − 3688

    18. [18]

      Ouchi M, Terashima T, Sawamoto M. Chem Rev, 2009, 109(11): 4963 − 5050

    19. [19]

      Moad G, Rizzardo E, Thang S H. Polymer, 2008, 49(5): 1079 − 1131

    20. [20]

      Gody G, Maschmeyer T, Zetterlund P B, Perrier S. Nat Commun, 2013, 4(9): 2505

    21. [21]

      Engelis N G, Anastasaki A, Nurumbetov G, Truong N P, Nikolaou V, Shegiwal A, Whittaker M R, Davis T P, Haddleton D M. Nat Chem, 2017, 9(2): 171 − 178

    22. [22]

      Anastasaki A, Oschmann B, Willenbacher J, Melker A, van Son M H C, Truong N P, Schulze M W, Discekici E H, McGrath A J, Davis T P, Bates C M, Hawker C J. Angew Chem Int Ed, 2017, 56(46): 14483 − 14487

    23. [23]

      Lutz J F, Kirci B, Matyjaszewski K. Macromolecules, 2003, 36(9): 3136 − 3145

    24. [24]

      Lutz J F, Pakula T, Matyjaszewski K. ACS Sym Ser, 2003, 854(19): 268 − 282

    25. [25]

      Van Steenberge P H M, D'hooge D R, Wang Y, Zhong M J, Reyniers M F, Konkolewicz D, Matyjaszewski K, Marin G B. Macromolecules, 2012, 45(21): 8519 − 8531

    26. [26]

      Pakula T, Matyjaszewski K. Macromol Theor Simul, 1996, 5(5): 987 − 1006

    27. [27]

      Gray M K, Zhou H Y, Nguyen S T, Torkelson J M. Macromolecules, 2004, 37(15): 5586 − 5595

    28. [28]

      Gray M K, Zhou H Y, Nguyen S T, Torkelson J M. Polymer, 2004, 45(14): 4777 − 4786

    29. [29]

      Matyjaszewski K. J Macromol Sci Pure, 1997, A34(10): 1785 − 1801

    30. [30]

      Lee H I, Matyjaszewski K, Yu S, Sheiko S S. Macromolecules, 2005, 38(20): 8264 − 8271

    31. [31]

      Wang L, Broadbelt L J. Macromolecules, 2010, 43(5): 2228 − 2235

    32. [32]

      Ercole F, Malic N, Harrisson S, Davis T P, Evans R A. Macromolecules, 2010, 43(1): 249 − 261

    33. [33]

      Pfeifer S, Lutz J F. J Am Chem Soc, 2007, 129(31): 9542 − 9543

    34. [34]

      Satoh K, Matsuda M, Nagai K, Kamigaito M. J Am Chem Soc, 2010, 132(29): 10003 − 10005

    35. [35]

      Hibi Y, Ouchi M, Sawamoto M. Angew Chem Int Ed, 2011, 50(32): 7434 − 7437

    36. [36]

      Ida S, Ouchi M, Sawamoto M. J Am Chem Soc, 2010, 132(42): 14748 − 14750

    37. [37]

      Ogura Y, Terashima T, Sawamoto M. Polym Chem, 2017, 8(15): 2299 − 2308

    38. [38]

      Ogura Y, Artar M, Palmans A R A, Sawamoto M, Meijer E W, Terashima T. Macromolecules, 2017, 50(8): 3215 − 3223

    39. [39]

      Yao F J, Liu Q Q, Zhang Z B, Zhu X L. Polymers, 2017, 9(3): 89 − 100

    40. [40]

      Zhou Y Y, Liu Q Q, Zhang Z B, Zhu J, Zhu X L. Polym Chem, 2017, 8(44): 6909 − 6916

    41. [41]

      Wu H, Wan Y, Wang W, Wang Y, Zhou N, Zhang W, Li X, Zhang Z, Zhu X. Polym Chem, 2015, 6(14): 2620 − 2625

    42. [42]

      Zhou X, Wang W, Yu H, Zhao J, Zhang Z, Zhu X. Polym Chem, 2013, 4(12): 3575 − 3581

    43. [43]

      Ji Y X, Zhang L Q, Gu X, Zhang W, Zhou N C, Zhang Z B, Zhu X L. Angew Chem Int Ed, 2017, 56(9): 2328 − 2333

    44. [44]

      Gu X, Zhang L Q, Li Y, Zhang W, Zhu J, Zhang Z B, Zhu X L. Polym Chem, 2018, 9(13): 1571 − 1576

    45. [45]

      Lin F, Wang M Y, Pan Y P, Tang T, Cui D M, Liu B. Macromolecules, 2017, 50(3): 849 − 856

    46. [46]

      Liu B, Cui D M, Tang T. Angew Chem Int Ed, 2016, 55(39): 11975 − 11978

    47. [47]

      Liu D, Wang M, Wang Z, Wu C, Pan Y, Cui D. Angew Chem Int Ed, 2017, 56(10): 2714 − 2719

    48. [48]

      Li J, He J. Acs Macro Lett, 2015, 4(4): 372 − 376

    49. [49]

      Zhang Z, You Y Z, Wu D C, Hong C Y. Macromolecules, 2015, 48(11): 3414 − 3421

    50. [50]

      Matsumoto S, Kanazawa A, Kanaoka S, Aoshima S. J Am Chem Soc, 2017, 139(23): 7713 − 7716

    51. [51]

      Merrifield R B. J Am Chem Soc, 1963, 85(14): 2149 − 2154

    52. [52]

      Zuckermann R N, Kerr J M, Kent S B H, Moos W H. J Am Chem Soc, 1992, 114(26): 10646 − 10647

    53. [53]

      Porel M, Thornlow D N, Phan N N, Alabi C A. Nat Chem, 2016, 8(6): 590 − 596

    54. [54]

      Pfeifer S, Zarafshani Z, Badi N, Lutz J F. J Am Chem Soc, 2009, 131(26): 9195 − 9197

    55. [55]

      Porel M, Alabi C A. J Am Chem Soc, 2014, 136(38): 13162 − 13165

    56. [56]

      Solleder S C, Meier M A. Angew Chem Int Ed, 2014, 53(3): 711 − 714

    57. [57]

      Roy R K, Meszynska A, Laure C, Charles L, Verchin C, Lutz J F. Nat Commun, 2015, 6(1): 7237 − 7244

    58. [58]

      Foarta F, Landis C R. J Org Chem, 2016, 81(22): 11250 − 11255

    59. [59]

      Hibi Y, Ouchi M, Sawamoto M. Nat Commun, 2016, 7(1): 11064 − 11072

    60. [60]

      Wu Y H, Zhang J, Du F S, Li Z C. ACS Macro Lett, 2017, 6(12): 1398 − 1403

    61. [61]

      Solleder S C, Wetzel K S, Meier M A. Polym Chem, 2015, 6(17): 3201 − 3204

    62. [62]

      Solleder S C, Zengel D, Wetzel K S, Meier M A. Angew Chem Int Ed, 2016, 55(3): 1204 − 1207

    63. [63]

      Amir F, Jia Z, Monteiro M J. J Am Chem Soc, 2016, 138(51): 16600 − 16603

    64. [64]

      Wang Q, Qu Y, Tian H, Geng Y, Wang F. Macromolecules, 2011, 44(6): 1256 − 1260

    65. [65]

      Takizawa K, Nulwala H, Hu J, Yoshinaga K, Hawker C J. J Polym Sci, Part A: Polym Chem, 2008, 46(18): 5977 − 5990

    66. [66]

      Barnes J C, Ehrlich D J, Gao A X, Leibfarth F A, Jiang Y, Zhou E, Jamison T F, Johnson J A. Nat Chem, 2015, 7(10): 810 − 815

    67. [67]

      Leibfarth F A, Johnson J A, Jamison T F. Proc Natl Acad Sci USA, 2015, 112(34): 10617 − 10622

    68. [68]

      Jiang Y, Golder M R, Nguyen H V, Wang Y, Zhong M, Barnes J C, Ehrlich D J, Johnson J A. J Am Chem Soc, 2016, 138(30): 9369 − 9372

    69. [69]

      Golder M R, Jiang Y, Teichen P E, Nguyen H V, Wang W, Milos N, Freedman S A, Willard A P, Johnson J A. J Am Chem Soc, 2018, 140(5): 1596 − 1599

    70. [70]

      Schumm J S, Pearson D L, Tour J M. Angew Chem Int Ed, 1994, 33(13): 1360 − 1363

    71. [71]

      Pearson D L, Schumm J S, Tour J M. Macromolecules, 1994, 27(8): 2348 − 2350

    72. [72]

      Sakurai S, Goto H, Yashima E. Org Lett, 2001, 3(15): 2379 − 2382

    73. [73]

      Sadighi J P, Singer R A, Buchwald S L. J Am Chem Soc, 1998, 120(20): 4960 − 4976

    74. [74]

      Igner E, Paynter O I, Simmonds D J, Whiting M C. J Chem Soc, Perkin Trans 1, 1987, 1987(11): 2447 − 2454

    75. [75]

      Binauld S, Hawker C J, Fleury E, Drockenmuller E. Angew Chem Int Ed, 2009, 48(36): 6654 − 6658

    76. [76]

      Jiang X, Lu J, Zhou F, Zhang Z, Pan X, Zhang W, Wang Y, Zhou N, Zhu X. Polym Chem, 2016, 7(15): 2645 − 2651

    77. [77]

      Reddy S S, Dong X, Murgasova R, Gusev A I, Hercules D M. Macromolecules, 1999, 32(5): 1367 − 1374

    78. [78]

      Hawker C J, Malmström E E, Frank C W, Kampf J P. J Am Chem Soc, 1997, 119(41): 9903 − 9904

    79. [79]

      Wooley K L, Hawker C J, Fréchet J M. Angew Chem Int Ed, 1994, 33(1): 82 − 85

    80. [80]

      Huang Z, Zhao J, Wang Z, Meng F, Ding K, Pan X, Zhou N, Li X, Zhang Z, Zhu X. Angew Chem Int Ed, 2017, 56(44): 13612 − 13617

    81. [81]

      Kleiner R E, Brudno Y, Birnbaum M E, Liu D R. J Am Chem Soc, 2008, 130(14): 4646 − 4659

    82. [82]

      Niu J, Hili R, Liu D R. Nat Chem, 2013, 5(4): 282 − 292

    83. [83]

      Rosenbaum D M, Liu D R. J Am Chem Soc, 2003, 125(46): 13924 − 13925

    84. [84]

      Houshyar S, Keddie D J, Moad G, Mulder R J, Saubern S, Tsanaktsidis J. Polym Chem, 2012, 3(7): 1879 − 1889

    85. [85]

      Vandenbergh J, Reekmans G, Adriaensens P, Junkers T. Chem Commun, 2013, 49(88): 10358 − 10360

    86. [86]

      Xu J, Shanmugam S, Fu C, Aguey-Zinsou K F, Boyer C. J Am Chem Soc, 2016, 138(9): 3094 − 3106

    87. [87]

      Xu J, Fu C, Shanmugam S, Hawker C J, Moad G, Boyer C. Angew Chem Int Ed, 2017, 56(29): 8376 − 8383

    88. [88]

      Oh D, Ouchi M, Nakanishi T, Ono H, Sawamoto M. ACS Macro Lett, 2016, 5(6): 745 − 749

    89. [89]

      Soejima T, Satoh K, Kamigaito M. J Am Chem Soc, 2016, 138(3): 944 − 954

    90. [90]

      Judzewitsch P R, Nguyen T K, Shanmugam S, Wong E H H, Boyer C. Angew Chem Int Ed, 2018, 57(17): 4559 − 4564

    91. [91]

      Kuroki A, Sangwan P, Qu Y, Peltier R, Sanchez-Cano C, Moat J, Dowson C G, Williams E G L, Locock K E S, Hartlieb M, Perrier S. ACS Appl Mater Interfaces, 2017, 9(46): 40117 − 40126

    92. [92]

      Zhang J L, Deubler R, Hartlieb M, Martin L, Tanaka J, Patyukova E, Topham P D, Schacher F H, Perrier S. Macromolecules, 2017, 50(18): 7380 − 7387

    93. [93]

      Washington M A, Swiner D J, Bell K R, Fedorchak M V, Little S R, Meyer T Y. Biomaterials, 2017, 117(1): 66 − 76

    94. [94]

      Lawrence J, Goto E, Ren J M, McDearmon B, Kim D S, Ochiai Y, Clark P G, Laitar D, Higashihara T, Hawker C J. J Am Chem Soc, 2017, 139(39): 13735 − 13739

    95. [95]

      Norris B N, Zhang S, Campbell C M, Auletta J T, Calvo-Marzal P, Hutchison G R, Meyer T Y. Macromolecules, 2013, 46(4): 1384 − 1392

    96. [96]

      Cavallo G, Al Ouahabi A, Oswald L, Charles L, Lutz J F. J Am Chem Soc, 2016, 138(30): 9417 − 9420

    97. [97]

      Charles L, Laure C, Lutz J F, Roy R K. Macromolecules, 2015, 48(13): 4319 − 4328

    98. [98]

      Laure C, Karamessini D, Milenkovic O, Charles L, Lutz J F. Angew Chem Int Ed, 2016, 55(36): 10722 − 10725

    99. [99]

      Karamessini D, Poyer S, Charles L, Lutz J F. Macromol Rapid Commun, 2017, 38(24): 1700426 − 1700430

    100. [100]

      Colquhoun H, Lutz J F. Nat Chem, 2014, 6(6): 455 − 456

    101. [101]

      Burel A, Carapito C, Lutz J F, Charles L. Macromolecules, 2017, 50(20): 8290 − 8296

    102. [102]

      Karamessini D, Petit B E, Bouquey M, Charles L, Lutz J F. Adv Funct Mater, 2017, 27(3): 1604595 − 1604601

  • 加载中
    1. [1]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    2. [2]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    7. [7]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    8. [8]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    9. [9]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    13. [13]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    14. [14]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    15. [15]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    16. [16]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    17. [17]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    18. [18]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    19. [19]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    20. [20]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

Metrics
  • PDF Downloads(0)
  • Abstract views(286)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return