Citation: Hui-zhen Du, Fei Yang, Kun-yu Zhang, Zhe Ma, Bin Wang, Li Pan, Yue-sheng Li. Study on Compatibilizing Polypropylene/Nylon 11 Blends by Isotactic Polypropylene Ionomers[J]. Acta Polymerica Sinica, ;2018, 0(12): 1539-1547. doi: 10.11777/j.issn1000-3304.2018.18090 shu

Study on Compatibilizing Polypropylene/Nylon 11 Blends by Isotactic Polypropylene Ionomers

  • Corresponding author: Li Pan, lilypan@tju.edu.cn
  • Received Date: 22 March 2018
    Revised Date: 12 April 2018
    Available Online: 18 September 2018

  • The copolymers of propylene/11-iodo-1-undecene were taken as intermediates and the iodine group underwent a nucleophilic substitution reaction or click reaction with N-methylimidazole or 2-mercaptonoaniline to prepare isotactic polypropylene ionomers. Isotactic polypropylene (iPP) and bio-renewable polyamide 11 (PA11) were mixed with the isotactic polypropylene ionomers to prepare novel polymer blends with excellent physical properties. The miscibility, morphology and mechanical properties of iPP/ionomer blends, PA11/ionomer blends and iPP/PA11/ionomer blends were investigated, respectively. DMA analysis revealed that miscibility of iPP and PA11 was improved by addition of the isotactic polypropylene ionomers, which served as an effective compatibilizer and played a key role in improving toughness of iPP/PA11 blends. As observed, particles size of the dispersed phase (PA11) was significantly reduced from about 20 μm to 1 μm in the ternary blends of iPP/PA11/ionomer. Interface between the matrix and the dispersed phase became blurred and the gap disappeared in the ternary blend of iPP/PA11/ionomer (70/30/5), as observed on the SEM images of the cryo-fractured surface of the blend. Accordingly, notched impact strength of the same ternary blend was greatly improved from 2.11 kJ/m2 to 6.73 kJ/m2 without significantly sacrificing the tensile strength. To further study the toughening effect of iPP/PA11/ionomer ternary blends, the fracture surface of the impact specimen was also investigated. As proved, the iPP/PA11 (70/30) blend showed a smooth and featureless fracture surface without evident deformation, indicating a typical brittle fracture behavior, while the fracture surfaces of the ternary blends was increasingly rough and many irregularities were clearly observed, indicating a ductile fracture behavior. Here we proved that the synthesized isotactic polypropylene ionomers enhanced the two-phase interface interaction and the compatibility in the iPP/PA11/ionomer ternary blend. It is therefore a very promising and effective compatibilizer for iPP/PA11 blends. Moreover, the resulting iPP/PA11 blends with excellent impact properties and tensile properties are very promising in practically application.
  • 加载中
    1. [1]

      Ide F, Hasegawa A. J Appl Polym Sci, 1974, 18: 963 − 974  doi: 10.1002/app.1974.070180402

    2. [2]

      Wu S. Polymer, 1985, 26: 1855 − 1863  doi: 10.1016/0032-3861(85)90015-1

    3. [3]

      Wu S. Polym Eng Sci, 1987, 27: 335 − 343  doi: 10.1002/(ISSN)1548-2634

    4. [4]

      Inoue T. Prog Polym Sci, 1995, 20: 119 − 153  doi: 10.1016/0079-6700(94)00032-W

    5. [5]

      Liang B R, White J L, Spruiell J E, Goswami B C. J Appl Polym Sci, 1983, 28: 2011 − 2032  doi: 10.1002/app.1983.070280616

    6. [6]

      Sang J P, Kim B K, Han M J. Eur Polym J, 1990, 26: 131 − 136  doi: 10.1016/0014-3057(90)90176-5

    7. [7]

      Holsti-Miettinen R, Seppälä J, Ikkala O T. Polym Eng Sci, 1992, 32: 868 − 877  doi: 10.1002/pen.v32:13

    8. [8]

      González-Montiel A, Keskkula H, Paul D R. Polymer, 1995, 36: 4605 − 4620  doi: 10.1016/0032-3861(95)96829-W

    9. [9]

      Nishio T, Suzuki Y, Kojima K, Kakugo M. J Polym Eng, 1991, 10: 123 − 150

    10. [10]

      Dagli S S, Xanthos M, Biesenberger J A. Polym Eng Sci, 1994, 34: 1720 − 1730  doi: 10.1002/(ISSN)1548-2634

    11. [11]

      Cho K, Li F K. Macromolecules, 1998, 31: 7495 − 7505  doi: 10.1021/ma971019y

    12. [12]

      Boucher E, Folkers J P, Hubert Hervet A, Léger L, Creton C. Macromolecules, 1996, 29: 774 − 782  doi: 10.1021/ma9509422

    13. [13]

      Boucher E, Folkers J P, Creton C, Hervet A, Léger L. Macromolecules, 1997, 30: 2102 − 2109  doi: 10.1021/ma961105i

    14. [14]

      Lu B, Chung T C. Macromolecules, 1998, 31: 5943 − 5946  doi: 10.1021/ma9804693

    15. [15]

      Lu B, Chung T C. Macromolecules, 1999, 32: 2525 − 2533  doi: 10.1021/ma990019q

    16. [16]

      Terzis A F, Theodorou D N, Stroeks A. Macromolecules, 2000, 33: 1397 − 1410  doi: 10.1021/ma991025p

    17. [17]

      Shi D, Ke Z, Yang J H, Gao Y, Wu J, Yin J H. Macromolecules, 2002, 35: 8005 − 8012  doi: 10.1021/ma020595d

    18. [18]

    19. [19]

      Wang B B, Hu G S, Wei L X. J Appl Polym Sci, 2008, 107: 3013 − 3022  doi: 10.1002/(ISSN)1097-4628

    20. [20]

      Wang B B, Wei L X, Hu G S. J Appl Polym Sci, 2008, 110: 1344 − 1350  doi: 10.1002/app.v110:3

    21. [21]

      Kawada J, Kitou M, Mouri M, Mitsuoka T, Araki T, Lee C H, Ario T, Kitou O, Usuki A. ACS Sustain Chem Eng, 2016, 4: 2158 − 2164  doi: 10.1021/acssuschemeng.5b01615

    22. [22]

      Kawada J, Kitou M, Mouri M, Kato Y, Katagiri Y, Matsushita M, Ario T, Kitou O, Usuki A. Green Chem, 2017, 19: 4503 − 4508  doi: 10.1039/C7GC01842H

    23. [23]

    24. [24]

      Bai S L, Wang G T, Hiver J M, G’Sell C. Polymer, 2004, 45: 3063 − 3071  doi: 10.1016/j.polymer.2004.02.070

    25. [25]

    26. [26]

      Kim Y J, Lee H M, Park O O. Polym Eng Sci, 1995, 35: 1652 − 1657  doi: 10.1002/(ISSN)1548-2634

    27. [27]

      Dutta D, Weiss R A, He J. Polymer, 1996, 37: 429 − 435  doi: 10.1016/0032-3861(96)82912-0

    28. [28]

      Lu X, Weiss R A. Macromolecules, 1991, 24: 4381 − 4385  doi: 10.1021/ma00015a021

    29. [29]

      Li H, Li Z. J Appl Polym Sci, 1998, 67: 61 − 69  doi: 10.1002/(ISSN)1097-4628

    30. [30]

      Yousfi M, Livi S, Dumas A, Crépin-Leblond J, Greenhill-Hooper M, Duchet-Rumeauabc J. RSC Adv, 2015, 5: 46197 − 46205  doi: 10.1039/C5RA00816F

    31. [31]

      Bhattacharyya A R, Ghosh A K, Misra A. Polymer, 2003, 44: 1725 − 1732  doi: 10.1016/S0032-3861(02)00802-9

    32. [32]

      Wang X Y, Li Y G, Mu H L, Pan L, Li Y S. Polym Chem-UK, 2015, 6: 1150 − 1158  doi: 10.1039/C4PY01350F

    33. [33]

      Wang X Y, Wang Y X, Shi X C, Liu J Y, Chen C L, Li Y S. Macromolecules, 2014, 47: 552 − 559  doi: 10.1021/ma4022696

    34. [34]

      Wang X Y, Long Y Y, Wang Y X, Li Y S. Polym Chem-UK, 2014, 52: 3421 − 3428  doi: 10.1002/pola.v52.23

    35. [35]

    36. [36]

      Choi U H, Ye Y S, Cruz D S D L, Liu W J, Winey K I, Elabd Y A, Runt J, Colby R H. Macromolecules, 2014, 47: 777 − 790  doi: 10.1021/ma402263y

    37. [37]

      Choi U H, Lee M, Wang S, Liu W, Winey K I, Gibson H W, Colby R H. Macromolecules, 2012, 45: 3974 − 3985  doi: 10.1021/ma202784e

    38. [38]

      Cui J, Nie F M, Yang J X, Pan L, Ma Z, Li Y S. J Mater Chem A, 2017, 5: 25220 − 25229  doi: 10.1039/C7TA06793C

    39. [39]

    40. [40]

      Tanaka S, Nakashima T, Maeda T, Ratanasak M, Hasegawa J, Kon Y, Tamura M, Sato K. ACS Catal, 2018, 8: 1097 − 1103  doi: 10.1021/acscatal.7b03303

    41. [41]

      Izgorodina E I, Macfarlane D R. J Phys Chem B, 2011, 115: 14659 − 14667  doi: 10.1021/jp208150b

  • 加载中
    1. [1]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    2. [2]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    5. [5]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    6. [6]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    7. [7]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    8. [8]

      . . University Chemistry, 2024, 39(11): 0-0.

    9. [9]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    10. [10]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    15. [15]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    16. [16]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    17. [17]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    18. [18]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    19. [19]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    20. [20]

      Zhexue Lu Ping Wu Huihui Li Libai Wen . 四“味”一体的无机及分析化学课程思政. University Chemistry, 2025, 40(6): 333-340. doi: 10.12461/PKU.DXHX202405196

Metrics
  • PDF Downloads(0)
  • Abstract views(151)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return