Citation: Yang Xu, Dun Li, Jia-bin Shen, Shao-yun Guo, Hung-Jue Sue. Research Progress in Scratch Behaviors of Polymeric Materials[J]. Acta Polymerica Sinica, ;2018, 0(10): 1262-1278. doi: 10.11777/j.issn1000-3304.2018.18089 shu

Research Progress in Scratch Behaviors of Polymeric Materials

  • With their broad application of polymer materials in optical, packaging, automotive, decorating areas and so on, the demand for their surface quality is becoming higher. Different from frictional wearing, scratching is a special mechanical deformation and failure process caused by a hard tip which is normally compressed on a material and quickly moved across its surface and subsurface. It has been widely demonstrated that the aesthetics, integrity and durability of most polymer materials are susceptible to damage by scratching even under low contact loads. Therefore, the scratch resistance as one of the basic mechanical performances for polymeric materials has caught significant and increasing attention in both academic and industrial areas in recent 15 years. Commonly, the scratching process contains a rapidly changing three-dimensional stress field due to the fast tip movement and can be performed by applying different tip geometries or dimensions. To evaluate and detect the scratch behaviors of a polymeric product qualitatively and quantitatively, several measuring techniques and standards have been established. In general, the scratch deformation can be divided into initial damage (ploughing), periodic damage (wedge formation) and material removal stages. To improve the scratch resistance, it is necessary to comprehensively understand the relationship to the structures and morphologies of the polymeric materials as well as various measuring conditions, such as the scratching rate, normal load, humidity and temperature, etc. In this brief review, the progress in recent studies on scratch behaviors of polymeric materials is presented. The main contents include the measuring and analyzing methodologies for evaluating the scratch resistance, the failure patterns and deformation mechanisms corresponding to different damage stages occurring in a scratch process, the intrinsic and extrinsic factors influencing the scratch behaviors, and the modification strategies for resisting the scratch deformation. At last, the perspective of the fundamental studies in this field is concluded as well.
  • 加载中
    1. [1]

      ISO 19252:2008, Plastics−Determination of Scratch Properties

    2. [2]

      ASTM D7027-13, Standard Test Method for Evaluation of Scratch Resistance of Polymeric Coatings and Plastics Using an Instrumented Scratch Machine

    3. [3]

      Pan Rongrong

    4. [4]

      Zhang Lijuan

    5. [5]

      Wong M, Lim G T, Moyse A, Reddy J N, Sue H J. Wear, 2004, 256(11-12): 1214 − 1227

    6. [6]

      Xiang C, Sue H J, Chu J, Coleman B. J Polym Sci, Part B: Polym Phys, 2001, 39(1): 47 − 59

    7. [7]

      Chu J, Xiang C, Sue H J, Hollis R D. Polym Eng Sci, 2000, 40(4): 944 − 955

    8. [8]

      Xiang C, Sue H J, Chu J, Masuda K. Polym Eng Sci, 2001, 41(1): 23 − 31

    9. [9]

      Lei F, Hamdi M, Liu P, Li P, Mullins M, Wang H, Li J, Krishnamoorti R, Guo S, Sue H. Polymer, 2017, 112: 252 − 263

    10. [10]

      Jiang H, Browning R, Sue H. Polymer, 2009, 50(16): 4056 − 4065

    11. [11]

      Jiang H, Browning R L, Hossain M M, Sue H, Fujiwara M. Appl Surf Sci, 2010, 256(21): 6324 − 6329

    12. [12]

      Djabella H. Thin Solid Films, 1992, 213(2): 205 − 219

    13. [13]

      Hamilton G M, Goodman L E. J Appl Mech-T, 1966, 33(2): 371 − 376

    14. [14]

      Hamilton G M. P I Mech Eng C-J Mec, 1983, 197(1): 53 − 59

    15. [15]

      Lim G T, Wong M H, Reddy J N, Sue H J. J Coat Technol Res, 2005, 2(5): 361 − 369

    16. [16]

      Browning R, Hossain M M, Li J, Jones S, Sue H. Tribol Int, 2011, 44(9): 1024 − 1031

    17. [17]

      Li K J, Ni B Y, Li J C M. J Mater Res, 1996, 11(6): 1574 − 1580

    18. [18]

      Zhang S L, Li J. Mat Sci Eng A-Struct, 2003, 344(1-2): 182 − 189

    19. [19]

      Zhang S L, Nishizoe K. Tribol Lett, 2004, 16(1-2): 73 − 79

    20. [20]

      Jiang H, Cheng Q, Jiang C, Zhang J, Li Y. Tribol Int, 2015, 91: 1 − 5

    21. [21]

      Jiang H, Zhang J, Yang Z, Jiang C, Kang G. Int J Solids Struct, 2017, 124: 215 − 228

    22. [22]

      Baietto M C, Rannou J, Gravouil A, Pelletier H, Gauthier C, Schirrer R. Tribol Int, 2011, 44(11): 1320 − 1328

    23. [23]

      Liang Y, Sue H, Minkwitz R. J Appl Polym Sci, 2012, 126(3): 1088 − 1096

    24. [24]

      Hossain M M, Browning R, Minkwitz R, Sue H. Tribol Lett, 2012, 47(1): 113 − 122

    25. [25]

      Hossain M M, Jiang H, Sue H. Wear, 2011, 270(11-12): 751 − 759

    26. [26]

      Chu J, Rumao L, Coleman B. Polym Eng Sci, 1998, 38(11): 1906 − 1914

    27. [27]

      Jiang H, Lim G T, Reddy J N, Whitcomb J D, Sue H. J Polym Sci, Part B: Polym Phys, 2007, 45(12): 1435 − 1447

    28. [28]

      Zhang J, Jiang H, Jiang C, Kang G, Kan Q, Li Y. Polym Eng Sci, 2018, 58(1): 118 − 122

    29. [29]

      Bucaille J L, Felder E, Hochstetter G. J Tribol-T Asme, 2004, 126(2): 372 − 379

    30. [30]

      Bucaille J L, Gauthier C, Felder E, Schirrer R. Wear, 2006, 260(7-8): 803 − 814

    31. [31]

      Pelletier H, Krier J, Gauthier C. Proced Eng, 2011, 10: 1772 − 1778

    32. [32]

      Hossain M M, Minkwitz R, Sue H. Polym Eng Sci, 2013, 53(7): 1405 − 1413

    33. [33]

      Moghbelli E, Browning R L, Boo W J, Hahn S F, Feick L J E, Sue H J. Tribol Int, 2008, 41(5SI): 425 − 433

    34. [34]

      Browning R, Sue H, Minkwitz R, Charoensirisomboon P. Polym Eng Sci, 2011, 51(11SI): 2282 − 2294

    35. [35]

      Hamdi M, Puopolo M, Pham H, Sue H. Tribol Int, 2016, 103: 412 − 422

    36. [36]

      Zhu Z, Cheng Q, Jiang C, Zhang J, Jiang H. Wear, 2016, 352-353: 155 − 159

    37. [37]

      Cheng Q, Jiang C, Zhang J, Yang Z, Zhu Z, Jiang H. Tribol Int, 2016, 101: 110 − 114

    38. [38]

      Jiang H, Browning R, Fincher J, Gasbarro A, Jones S, Sue H. Appl Surf Sci, 2008, 254(15): 4494 − 4499

    39. [39]

      Liang Y, Moghbelli E, Sue H, Minkwitz R, Stark R. Polymer, 2012, 53(2): 604 − 612

    40. [40]

      Hossain M M, Jahnke E, Boeckmann P, Guriyanova S, Minkwitz R, Sue H. Tribol Int, 2016, 99: 248 − 257

    41. [41]

      Hossain M M, Moghbelli E, Jahnke E, Boeckmann P, Guriyanova S, Sander R, Minkwitz R, Sue H. Polymer, 2015, 63: 71 − 81

    42. [42]

      Carrión-Vilches F J, González-Vivas A, Martínez-Mateo I J, Bermúdez M D. Tribol Int, 2015, 92: 365 − 378

    43. [43]

      Hadal R, Dasari A, Rohrmann J, Misra R. Mat Sci Eng A-Struct, 2004, 380(1-2): 326 − 339

    44. [44]

      Hamdi M, Zhang X, Sue H. Wear, 2017, 380-381: 203 − 216

    45. [45]

      Hossain M M, Xiao S, Sue H, Kotaki M. Mater Design, 2017, 128: 143 − 149

    46. [46]

      Hare B A, Moyse A, Sue H. J Mater Sci, 2012, 47(3): 1389 − 1398

    47. [47]

      Hare B A, Sue H, Liang L Y, Kinigakis P. Polym Eng Sci, 2014, 54(1): 71 − 77

    48. [48]

      Gauthier C, Schirrer R. J Mater Sci, 2000, 35(9): 2121 − 2130

    49. [49]

      Jardret V, Morel P. Prog Org Coat, 2003, 48(2-4): 322 − 331

    50. [50]

      Chivatanasoontorn V, Aoki N, Kotaki M. J Appl Polym Sci, 2012, 125(4): 2861 − 2866

    51. [51]

      Browning R L, Jiang H, Moyse A, Sue H, Iseki Y, Ohtani K, Ijichi Y. J Mater Sci, 2008, 43(4): 1357 − 1365

    52. [52]

      Surampadi N L, Pesacreta T C, Misra R D K. Mat Sci Eng A-Struct, 2007, 456(1-2): 218 − 229

    53. [53]

      Browning R, Minkwitz R, Charoensirisomboon P, Sue H. J Mater Sci, 2011, 46(17): 5790 − 5797

    54. [54]

      Moghbelli E, Banyay R, Sue H. Tribol Int, 2014, 69: 46 − 51

    55. [55]

      Xiao S, Wang H, Hu F, Sue H. Polymer, 2018, 137: 209 − 221

    56. [56]

      Kim B, Kim H, Choi B, Lee H. Tribol Int, 2011, 44(12): 2035 − 2041

    57. [57]

      Browning R, Lim G T, Moyse A, Sun L Y, Sue H J. Polym Eng Sci, 2006, 46(5): 601 − 608

    58. [58]

      Li Y, Chen S, Li X, Wu M, Sun J. ACS Nano, 2015, 9(10): 10055 − 10065

    59. [59]

      Zokaei S, Khosh-M R L, Bagheri R. Mat Sci Eng A-Struct, 2007, 445: 526 − 536

    60. [60]

      Zhang Q, Huang W, Zhong G. J Appl Polym Sci, 2017, 134(12): 44612

    61. [61]

      Bauer F, Ernst H, Decker U, Findeisen M, Glasel H J, Langguth H, Hartmann E, Mehnert R, Peuker C. Macromol Chem Phys, 2000, 201(18): 2654 − 2659

    62. [62]

      Bauer F, Sauerland V, Gläsel H J. Macromol Mater Eng, 2002, 287(8): 546 − 552

    63. [63]

      Bauer F, Gläsel H, Decker U, Ernst H, Freyer A, Hartmann E, Sauerland V, Mehnert R. Prog Org Coat, 2003, 47(2): 147 − 153

    64. [64]

      Stojanović S, Bauer F, Glaesel H J, Mehnert R. Mater Sci Forum, 2004, 453: 473 − 478

    65. [65]

      Sangermano M, Messori M, Martin-Gallego M, Rizza G, Voit B. Polymer, 2009, 50(24): 5647 − 5652

    66. [66]

      Wang Z Z, Gu P, Zhang Z. Wear, 2010, 269(1-2): 21 − 25

    67. [67]

      Sanei M, Mahdavian A R, Torabi S, Salehi-Mobarakeh H. Polym Bull, 2017, 74(5): 1879 − 1898

    68. [68]

      Verma G, Kaushik A, Ghosh A K. Adv Mater Res, 2012, 585: 473 − 477

    69. [69]

      Mudaliar A, Yuan Q, Misra R D K. Polym Eng Sci, 2006, 46(11): 1625 − 1634

    70. [70]

      Dasari A, Yu Z, Mai Y, Kim J. Nanotechnology, 2008, 19(0557085)

    71. [71]

      Arribas A, Bermudez M D, Brostow W, Carrion-Vilches F J, Olea-Mejia O. Express Polym Lett, 2009, 3(10): 621 − 629

    72. [72]

      Sinha S K, Song T, Wan X, Tong Y. Wear, 2009, 266(7-8): 814 − 821

    73. [73]

      Mohamadpour S, Pourabbas B, Fabbri P. Sci Iran, 2011, 18(3): 765 − 771

    74. [74]

      Espejo C, Carrion F J, Bermudez M D. Tribol Lett, 2013, 52(2): 271 − 285

    75. [75]

      Giraldo L F, Brostow W, Devaux E, López B L, Pérez L D. J Nanosci Nanotechno, 2008, 8(6): 3176 − 3183

    76. [76]

      Lopes M C, Ribeiro H, Gonçalves Santos M C, Seara L M, Queiroz Ferreira F L, Lavall R L, Silva G G. J Appl Polym Sci, 2017, 134(2): 44394

    77. [77]

      Hu H, Zhao S, Sun G, Zhong Y, You B. Prog Org Coat, 2018, 117: 118 − 129

    78. [78]

      Shin K, Hong J, Lee S, Jang J. J Mater Chem, 2012, 22(16): 7871 − 7879

    79. [79]

      Song J, Thurber C M, Kobayashi S, Baker A M, Macosko C W, Silvis H C. Polymer, 2012, 53(16): 3636 − 3641

    80. [80]

      Berrebi M, Fabre-Francke I, Lavedrine B, Fichet O. Eur Polym J, 2015, 63: 132 − 140

    81. [81]

      Seong D, Yeo J, Hwang S. J Ind Eng Chem, 2016, 36: 251 − 254

    82. [82]

      Yi L F, Xu Y, Li D, Shen J B, Guo S Y, Sue H J. Ind Eng Chem Res, 2018, 57(12): 4320 − 4328

    83. [83]

      Kobayashi Y, Otsuki Y, Kanno H, Hanamoto Y, Kanai T. J Appl Polym Sci, 2011, 120(1): 141 − 147

    84. [84]

      Seubert C, Nietering K, Nichols M, Wykoff R, Bollin S. Coatings, 2012, 2(4): 221 − 234

    85. [85]

      Boentoro W, Pflug A, Szyszka B. Thin Solid Films, 2009, 517(10): 3121 − 3125

    86. [86]

      Yavas H, Selcuk C D O, Ozhan A E S, Durucan C. Thin Solid Films, 2014, 556: 112 − 119

    87. [87]

      Le Bail N, Lionti K, Benayoun S, Pavan S, Thompson L, Gervais C, Dubois G, Toury B. New J Chem, 2015, 39(11): 8302 − 8310

    88. [88]

      Amerio E, Fabbri P, Malucelli G, Messori M, Sangermano M, Taurino R. Prog Org Coat, 2008, 62(2): 129 − 133

    89. [89]

      Fabbri P, Messori M, Toselli M, Veronesi P, Rocha J O, Pilati F. Adv Polym Technol, 2008, 27(2): 117 − 126

    90. [90]

      Ellinas K, Pujari S P, Dragatogiannis D A, Charitidis C A, Tserepi A, Zuilhof H, Gogolides E. ACS Appl Mater Interfaces, 2014, 6(9): 6510 − 6524

    91. [91]

      Chivatanasoontorn V, Tsukise S, Kotaki M. Polym Eng Sci, 2012, 52(9): 1862 − 1867

    92. [92]

      Hamdi M, Sue H. Mater Design, 2015, 83: 528 − 535

    93. [93]

      Barr C J, Wang L, Coffey J K, Daver F. J Mater Sci, 2017, 52(3): 1221 − 1234

    94. [94]

      Barr C J, Wang L, Coffey J K, Gidley A, Daver F. Wear, 2017, 384: 84 − 94

    95. [95]

      White S R, Sottos N R, Geubelle P H, Moore J S, Kessler M R, Sriram S R, Brown E N, Viswanathan S. Nature, 2001, 409(6822): 794

    96. [96]

      Cho S H, White S R, Braun P V. Adv Mater, 2009, 21(6): 645 − 649

    97. [97]

      Kashif M, Chang Y. J Appl Polym Sci, 2015, 132(8): 41511

    98. [98]

      Wang X, Liu F, Zheng X, Sun J. Angew Chem Int Ed, 2011, 50(48): 11378 − 11381

    99. [99]

      Wang Y, Li T, Li S, Sun J. Chem Mater, 2015, 27(23): 8058 − 8065

    100. [100]

      Bose R K, Hohlbein N, Garcia S J, Schmidt A M, van der Zwaag S. Phys Chem Chem Phys, 2015, 17(3): 1697 − 1704

    101. [101]

      Ghosh B, Chellappan K V, Urban M W. J Mater Chem, 2011, 21(38): 14473

    102. [102]

      Yari H, Mohseni M, Messori M. RSC Adv, 2016, 6(79): 76028 − 76041

    103. [103]

      Jo Y Y, Lee A S, Baek K, Lee H, Hwang S S. Polymer, 2017, 124: 78 − 87

    104. [104]

      Kim S Y, Lee T H, Park Y I, Nam J H, Noh S M, Cheong I W, Kim J C. Polymer, 2017, 128: 135 − 146

  • 加载中
    1. [1]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    2. [2]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    3. [3]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    4. [4]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    5. [5]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    6. [6]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

    7. [7]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

    8. [8]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    9. [9]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    10. [10]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    11. [11]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

    12. [12]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    13. [13]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    14. [14]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    17. [17]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    18. [18]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    19. [19]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    20. [20]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(0)
  • Abstract views(157)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return