Citation: Hong-ran Fu, Yun-yun Song, Xiao-rui Ren, Fang Guo. Copolymerization of Myrcene and Butadiene Catalyzed by Half-sandwich Scandium Complexes[J]. Acta Polymerica Sinica, ;2018, 0(11): 1416-1421. doi: 10.11777/j.issn1000-3304.2018.18088 shu

Copolymerization of Myrcene and Butadiene Catalyzed by Half-sandwich Scandium Complexes

  • Corresponding author: Fang Guo, guofang@dlut.edu.cn
  • Received Date: 21 March 2018
    Revised Date: 8 April 2018
    Available Online: 19 July 2018

  • Polymerization of myrcene and its copolymerization with butadiene by half-sandwich scandium complexes, (C5Me4SiMe3)Sc(CH2SiMe3)2(THF) (1) and Cp′Sc(CH2C6H4NMe2-o)2 (2: Cp′ = C5Me4SiMe3; 3: Cp′ = C5H5), have been examined. The microstructures and thermal properties of the obtained polymers were characterized by 1H-NMR, 13C-NMR, GPC and DSC. Significant ligand influence on the catalytic activity, selectivity, and polymer molecular weight has been observed in the homopolymerization of myrcene. The scandium complexes 1 and 2 bearing large C5Me4SiMe3 ligand showed relatively low activity (104 g polymer molSc−1 h−1) and preferred 3,4-selectivity (74% for 1 and 61% for 2). The myrcene homopolymers prepared by complexes 1 and 2 have low molecular weight (Mn = 1.7 × 104 − 5.6 × 104) and relatively high glass transition temperature (−48 and −45 °C). The complex 3 bearing small C5H5 ligand showed high activity (105 g polymer molSc−1 h−1) and high cis-1,4-selectivity (95%). The myrcene homopolymers prepared by complex 3 have high molecular weight (Mn = 7.0 × 104 − 2.31 × 105) and low glass transition temperature (Tg = −70 °C). By use of complex 3, the copolymerization of myrcene with butadiene was also achieved for the first time to afford a novel family of rubber materials. The copolymerization reaction was completed within 5 min, irrespective of the monomer feed ratio, and the copolymerization activity was raised to as high as 105 g polymer molSc−1 h−1. The copolymer composition was in agreement with the co-monomer feed ratio, suggesting that both monomers were completely incorporated into their copolymers. The obtained myrcene-butadiene copolymers showed a random monomer sequence distribution, and the cis-1,4 contents of both monomers in the copolymers were more than 92%. All of these copolymers showed a single Tg varing with the myrcene/butadiene ratio. The Tgs of the copolymers with myrcene content of 19 mol% − 75 mol% fell in a range of −95 °C to −71 °C, which are between those of homopolymyrcene (−70 °C) and homopolybutadiene (−107 °C). The Tg of the copolymers decreased with increasing butadiene content. The molecular weight of the myrcene-butadiene copolymers can be controlled simply by changing the monomer/catalyst ratio.
  • 加载中
    1. [1]

      Wilbon P A, Chu F, Tang C. Macromol Rapid Commun, 2013, 34(1): 8 − 37

    2. [2]

      Zhao J, Schlaad H. Adv Polym Sci, 2013, 253(19): 151 − 190

    3. [3]

      Nishiura M, Hou Z. Nat Chem, 2010, 2(4): 257 − 268

    4. [4]

      Nishiura M, Guo F, Hou Z. Acc Chem Res, 2015, 48(8): 2209 − 2220

    5. [5]

      Huang J, Liu Z, Cui D, Liu X. Chemcatchem, 2018, 10(1): 42 − 61

    6. [6]

      Loughmari S, Hafid A, Bouazza A, Bouadili A E, Zinck P, Visseaux M. J Polym Sci, Part A: Polym Chem, 2012, 50(14): 2898 − 2905

    7. [7]

      Loughmari S, Hafid A, Bouazza A, Bouadili A E, Zinck P, Visseaux M. J Polym Sci, Part A: Polym Chem, 2014, 52(11): 1642

    8. [8]

      Georges S, Toure A O, Visseaux M, Zinck P. Macromolecules, 2014, 47(14): 4538 − 4547

    9. [9]

      Liu B, Han B, Zhang C, Li S, Sun G, Cui D. Chinese J Polym Sci, 2015, 33(5): 792 − 796

    10. [10]

      Liu B, Li L, Sun G, Liu D, Li S, Cui D. Chem Commun, 2015, 51(6): 1039 − 1041

    11. [11]

      Liu B, Liu D, Li S, Sun G, Cui D. Chinese J Polym Sci, 2016, 34(1): 104 − 110

    12. [12]

      Luo Y, Baldamus J, Hou Z. J Am Chem Soc, 2004, 126(43): 13910 − 13911

    13. [13]

      Li X, Nishiura M, Mori K, Mashiko T, Hou Z. Chem Commun, 2007, (40): 4137 − 4139

    14. [14]

      Guo F, Nishiura M, Koshino H, Hou Z. Macromolecules, 2011, 44(16): 6335 − 6344

    15. [15]

      Chiem J C W, Tsai W M, Rausch M D. J Am Chem Soc, 1991, 113(22): 8570 − 8571

    16. [16]

      Kang X, Zhou G, Wang X, Qu J, Hou Z, Luo Y. Organometallics, 2016, 35(6): 913 − 920

    17. [17]

      Wang Yurong(王玉荣). Acta Polymerica Sinica(高分子学报), 2014, (10): 1420 − 1427

    18. [18]

      Li X, Nishiura M, Hu L, Mori K, Hou Z. J Am Chem Soc, 2009, 131(38): 13870 − 13882

  • 加载中
    1. [1]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    8. [8]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    9. [9]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    10. [10]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    13. [13]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    14. [14]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    17. [17]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    18. [18]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    19. [19]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    20. [20]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

Metrics
  • PDF Downloads(0)
  • Abstract views(123)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return