Citation: Hong Chen, Zheng-zhong Shao. Peptides/Amphiphilic Peptides Based Silk Fibroin of Bombxy Mori and Their Self-assembly and Functionalization[J]. Acta Polymerica Sinica, ;2018, 0(8): 987-996. doi: 10.11777/j.issn1000-3304.2018.18083 shu

Peptides/Amphiphilic Peptides Based Silk Fibroin of Bombxy Mori and Their Self-assembly and Functionalization

  • Corresponding author: Zheng-zhong Shao, zzshao@fudan.edu.cn
  • Received Date: 19 March 2018
    Revised Date: 9 April 2018
    Available Online: 15 June 2018

  • Given the unique properties and functions, such as bioactivity and good biocompatibility, the self-assembly of peptide, specially amphipathic peptide, and their applications have become the research focus in the fields of supermolecular chemistry as well as functional polymeric and biomedical materials. Generally, most of peptide building blocks are prepared from chemical synthesis such as solid phase peptide synthesis, or genetic engineering. Those " bottom up” methods may be suffered by time consuming and cost, which limit the practical application of assembly peptides materials. Degradation of natural proteins such as casein, corn protein and so on, provides us a convenient way to obtain the mixed peptides. However, most of researches about these mixtures are focused on their bio-functions or surfactant property. The usage of them as building blocks of assembly peptide is overlooked. Silk fibroin from Bombyx mori silkworm silk is with highly repetitive sequences, such as GAGAGY and GAGAGS, their different assembly properties and the relevant structures not only play an important role in the forming of animal silks and silk fibroin based materials, but also have crucial effect on their excellent comprehensive performance. According to the selectivity of different enzymes, there are enzymes which work on the Tyr-Gly or Ala-Gly peptide bone, respectively. Therefore, it provides us the opportunity to harvest the silk peptides with special sequence economically via degrading silk fibroin by those enzymes. We introduced in this paper the enzymatic degradation, a " top down” method on obtaining peptide with specific sequences from silk fibroin and investigated their assembly properties. In addition, we summarized the construction of functionalization amphiphilic peptides with one of those silk peptides (GAGAGAGY) as building block as well as their assembly and applications like the forming pH responsive peptide hydrogel, flexible thermochromism materials and unique peptide surfactant. Finally, we prospected the application of top down method on obtaining functional peptide building blocks as well as application of the silk peptide obtained by this way on construction functional peptides.
  • 加载中
    1. [1]

      Wang J, Liu K, Xing R, Yan X. Chem Soc Rev, 2016, 45(20): 5589-5604  doi: 10.1039/C6CS00176A

    2. [2]

      Zhao X B, Pan F, Xu H, Yaseen M, Shan H H, Hauser C A E, Zhang S G, Lu J R. Chem Soc Rev, 2010, 39(9): 3480-3498  doi: 10.1039/b915923c

    3. [3]

      Boekhoven J, Stupp S I. Adv Mater, 2014, 26(11): 1642-1659  doi: 10.1002/adma.201304606

    4. [4]

    5. [5]

    6. [6]

      Koh L D, Cheng Y, Teng C P, Khin Y W, Loh X J, Tee S Y, Low M, Ye E, Yu H D, Zhang Y W, Han M Y. Prog Polym Sci, 2015, 46: 86-110  doi: 10.1016/j.progpolymsci.2015.02.001

    7. [7]

      Joseph B, Raj S J. Front Life Sci, 2012, 6(3-4): 55-60  doi: 10.1080/21553769.2012.760491

    8. [8]

      Mita K, Ichimura S, James T C. J Mol Evol, 1994, 38(6): 583-592

    9. [9]

      Gong Z G, Huang L, Yang Y H, Chen X, Shao Z Z. Chem Commun, 2009, 48(48): 7506-7508

    10. [10]

    11. [11]

      Hao R, Zhang J, Xu T, Huang L, Yao J, Chen X, Shao Z. Polym Chem, 2013, 4(10): 3005-3011  doi: 10.1039/c3py21096k

    12. [12]

      Ling S J, Li C X, Adamcik J, Shao Z Z, Chen X, Mezzenga R. Adv Mater, 2014, 26(26): 4569-4574  doi: 10.1002/adma.v26.26

    13. [13]

      Liu Y X, Ling S J, Wang S H, Chen X, Shao Z Z. Biomater Sci, 2014, 2(10): 1338-1342  doi: 10.1039/C4BM00214H

    14. [14]

      Löwik D W, Garcia-Hartjes J, Meijer J T, van Hest J C. Langmuir, 2005, 21(2): 524-526  doi: 10.1021/la047578x

    15. [15]

      Cui H, Webber M J, Stupp S I. Biopolymers, 2010, 94(1): 1-18  doi: 10.1002/bip.21328

    16. [16]

      Pashuck E T, Cui H, Stupp S I. J Am Chem Soc, 2010, 132(17): 6041-6046  doi: 10.1021/ja908560n

    17. [17]

      Zhang J, Hao R, Huang L, Yao J, Chen X, Shao Z. Chem Commun, 2011, 47(37): 10296-10298  doi: 10.1039/c1cc12633d

    18. [18]

      Paramonov S E, Howook Jun A, Hartgerink J D. J Am Chem Soc, 2006, 128(22): 7291-7298  doi: 10.1021/ja060573x

    19. [19]

      Sadownik J W, Leckie J, Ulijn R V. Chem Commun, 2011, 47(2): 728-730  doi: 10.1039/C0CC03796F

    20. [20]

      Ghosh A, Dobson E T, Buettner C J, Nicholl M J, Goldberger J E. Langmuir, 2014, 30(51): 15383-15387  doi: 10.1021/la5037663

    21. [21]

      Zhao F Y, Guo H, Zhang Z D, Ye J, Liu L L, Zhao C X, Shao Z Z. J Mater Chem B, 2017, 5(26): 5189-5195  doi: 10.1039/C7TB00736A

    22. [22]

      Guo H, Zhang J M, Xu T, Zhang Z D, Yao J R, Shao Z Z. Biomacromolecules, 2013, 14(8): 2733-2738  doi: 10.1021/bm4005645

    23. [23]

      Zhang S M, Greenfield M A, Mata A, Palmer L C, Bitton R, Mantei J R, Aparicio C, Cruz, M O, Stupp, S I. Nat Mater, 2010, 9(7): 594-601  doi: 10.1038/nmat2778

    24. [24]

      Jelinek R, Ritenberg M. RSC Adv, 2013, 3(44): 21192-21201  doi: 10.1039/c3ra42639d

    25. [25]

      Diegelmann S R, Tovar J D. Macromol Rapid Commun, 2013, 34(17): 1343-1350  doi: 10.1002/marc.v34.17

    26. [26]

      Guo H, Zhang J M, Porter D, Peng H, Löwik D W P M, Wang Y, Zhang Z D, Chen X, Shao Z Z. Chem Sci, 2014, 5(11): 4189-4195  doi: 10.1039/C4SC01696C

    27. [27]

      Peng H S, Sun X M, Cai F J, Chen X L, Zhu Y C, Liao G P, Chen D Y, Li Q W, Lu Y F, Zhu Y T, Jia Q X. Nat Nano, 2009, 4(11): 738-741  doi: 10.1038/nnano.2009.264

    28. [28]

      Feng H B, Lu J, Li J H, Tsow F, Forzani E, Tao N J. Adv Mater, 2013, 25(12): 1729-1733  doi: 10.1002/adma.v25.12

    29. [29]

      Lu X, Zhang Z D, Sun X M, Chen P N, Zhang J, Guo H, Shao Z Z, Peng H S. Chem Sci, 2016, 7(8): 5113-5117  doi: 10.1039/C6SC00414H

    30. [30]

      Li Y, Tang Z, Prasad P N, Knecht M R, Swihart M T. Nanoscale, 2014, 6(6): 3165-3172  doi: 10.1039/C3NR06201E

    31. [31]

      Munro C J, Hughes Z E, Walsh T R, Knecht M R. J Phys Chem C, 2016, 120(33): 18917-18924  doi: 10.1021/acs.jpcc.6b06046

    32. [32]

      Yu L, Banerjee I A, Shima M, Rajan K, Matsui H. Adv Mater, 2004, 16(8): 709-712  doi: 10.1002/(ISSN)1521-4095

    33. [33]

      Tang Z, Kotov N A. Adv Mater, 2005, 36(25): 951-962

    34. [34]

      Zhang J M, Xu T, Yao J R, Huang L, Chen X, Shao Z Z. RSC Adv, 2012, 2(13): 5599-5604  doi: 10.1039/c2ra20259j

    35. [35]

      Merg A D, Boatz J C, Mandal A, Zhao G P, Mokashi-Punekar S, Liu C, Wang X T, Zhang P J, van der Wel, P C A, Rosi N L. J Am Chem Soc, 2016, 138(41): 13655-13663  doi: 10.1021/jacs.6b07322

    36. [36]

      Mokashi-Punekar S, Merg A D, Rosi N L. J Am Chem Soc, 2017, 139(42): 15043-15048  doi: 10.1021/jacs.7b07143

    37. [37]

    38. [38]

      Zhou L, Xu G, Zhang Z, Li H, Yao P. Colloid Surface A, 2018, 540: 150-157  doi: 10.1016/j.colsurfa.2017.12.070

    39. [39]

      Feng Z, Wang H, Zhou R, Li J, Xu B. J Am Chem Soc, 2017, 139(11): 3950-3953  doi: 10.1021/jacs.7b00070

    40. [40]

      Sahoo J K, Pappas C G, Sasselli I R, Abul-Haija Y M, Ulijn R V. Angew Chem Int Ed, 2017, 56(24): 6828-6832  doi: 10.1002/anie.201701870

    41. [41]

      Wibowo D, Wang H F, Shao Z, Middelberg A P J, Zhao C X. J Phys Chem C, 2017, 121(27):14658-14657  doi: 10.1021/acs.jpcc.7b03807

    42. [42]

      Wang H F, Wibowo D, Shao Z, Apj M, Zhao C X. Langmuir, 2017, 33(32): 7957-7967  doi: 10.1021/acs.langmuir.7b01382

  • 加载中
    1. [1]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    2. [2]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    3. [3]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    8. [8]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    11. [11]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    12. [12]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    17. [17]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    18. [18]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

Metrics
  • PDF Downloads(0)
  • Abstract views(124)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return