Citation: Xin He, Fen-fen Wang, Dong-lin Tian, Zhi-jun Yang, Tao Li, Ping-chuan Sun. Study on the Dynamic Structure and Properties of Thermo-reversible Crosslinked Epoxy[J]. Acta Polymerica Sinica, ;2018, 0(7): 949-958. doi: 10.11777/j.issn1000-3304.2018.18078 shu

Study on the Dynamic Structure and Properties of Thermo-reversible Crosslinked Epoxy

  • Corresponding author: Ping-chuan Sun, spclbh@nankai.edu.cn
  • Received Date: 15 March 2018
    Revised Date: 31 May 2018
    Available Online: 7 June 2018

  • The structure-property relationship of reversible crosslinked high performance polymer with self-healing and recyclable properties has attracted significant attention in the past decades. Herein, a thermally reversible crosslinked epoxy resin (DAERs) based on Diels-Alder covalent bonds was designed and prepared, where furan functional groups were incorporated into the side chains of linear epoxy resin and then cross-linked by maleimide. Different characterization techniques were used to investigate the structure-property relationship of DAERs. In situ variable-temperature 13C solid-state NMR was used to follow the evolution of dynamic Diels-Alder bonds in non-soluble cross-linked networks of DAERs, providing clear evidence of the cycling process of the DA reaction via displaying the consumption, appearing and disappearing of free furan group resonances in the network at different temperatures. NMR results provided a molecular level understanding of their equilibrated structure, and the reversible reconstruction and disconnection of the cross-link networks. Thermal behavior of DAERs was measured by repeated DSC cycles to verify the reversible temperature dependence of the DA and RDA reaction. Repeated endothermic and exothermic transition of DAERs during successive thermal cycles were observed, indicating the presence of RDA and DA reactions, respectively. The DSC results clearly demonstrated the capability of DAERs as a thermal re-mendable and recyclable material. The results of both DSC and DMA experiments indicated that the DA cross-linkage enhanced the glass transition and DA/retro-DA transition temperatures, and the heat-resistance of the materials increased with increasing cross-link density. Especially, DMA is a powerful and sensitive tool to distinguish the overlapped glass transition and DA/RDA temperatures. Tensile experiments indicated that the mechanical property also increased with the increase in crosslink density, and the synthesized DAERs exhibited good comprehensive mechanical properties, including high stiffness, strength, and toughness, and had good solvent and heat resistance. These materials can be easily thermally recycled, and this makes the material eco-friendly, with great potential for industrial applications.
  • 加载中
    1. [1]

      Hager M D, Greil P, Leyens C, van der Zwaag S, Schubert U S. Adv Mater, 2010, 22 (47): 5424-5430

    2. [2]

      Wu D Y, Meure S, Solomon D. Prog Polym Sci, 2008, 33 (5): 479-522

    3. [3]

      Zou W, Dong J, Luo Y, Zhao Q, Xie T. Adv Mater, 2017, 29(14): 1606100

    4. [4]

      Wojtecki R J, Meador M A, Rowan S J. Nat Mater, 2011, 10 (1): 14-27

    5. [5]

      Zhang M, Rong M Sci China Chem, 2012, 55 (5): 648-676.

    6. [6]

      Gandini A. Prog Polym Sci, 2013, 38: 1-29.

    7. [7]

      Chen X, Matheus A D, Ono K, Ajit M, Shen H, Steven R Nutt, Sheran K, Wudl F. Science, 2002, 295(5560): 1698-1702.

    8. [8]

      Zhang Y, Broekhuis A A, Picchioni F. Macromolecules, 2009, 42 (6): 1906-1912.

    9. [9]

      Liu, Y, Tsai W C.. Polym Chem, 2013, 4(7): 2194-2205.

    10. [10]

      Kloxin C J, Scott T F, Adzima B J, Bowman C N. Macromolecules, 2010, 43 (6): 2643-2653.

    11. [11]

      Yu S, Zhang R, Wu Q, Chen T, Sun P. Adv Mater, 2013, 25 (35): 4912-4917.

    12. [12]

      Zheng N, Fang G, Cao Z, Zhao Q, Xie T. Polym Chem, 2015, 6 (16): 3046-3053.

    13. [13]

      Lipic P M, Bates F S, Hillmyer M A. J Am Chem Soc, 1998, 120 (35): 8963-8970.

    14. [14]

      Tian Q, Yuan Y, Rong M, Zhang M. J Mater Chem, 2009, 19 (9): 1289-1296.

    15. [15]

      Tian Q, Rong M, Yuan Y, Zhang M. Polym Int, 2010, 59 (10): 1339-1345.

    16. [16]

      Zhang G, Zhao Q, Yang L, Zou W, Xi X, Xie T. Acs Macro Letters, 2016, 5 (7): 805-808.

    17. [17]

    18. [18]

      Chen S, Wang F, Peng Y, Sun P. Macrom Rapid Comm, 2015, 36 (18): 1687-1692.

    19. [19]

      Chen X, Wudl F, Mal A K, Shen H, Nutt S R. Macromolecules, 2003, 36 (6): 1802-1807.

    20. [20]

      Brandt J, Oehlenschlaeger K K, Schmidt F G,Kowollik C B, Lederer A. Adv Mater, 2014, 26 (33): 5758-5785.

    21. [21]

      Tao Z, Yang Shiyong, G, Chen J, Fan L. Euro Polym J, 2007, 43 (2): 550-560.

  • 加载中
    1. [1]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    2. [2]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    3. [3]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    4. [4]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    5. [5]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    6. [6]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    8. [8]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    9. [9]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    10. [10]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    11. [11]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    12. [12]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    13. [13]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    14. [14]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

Metrics
  • PDF Downloads(0)
  • Abstract views(96)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return