Citation: Qing-xiao Li, Zheng Wang, Yu-hua Yin, Run Jiang, Bao-hui Li. Self-assembly of Polymer-grafted Nanoparticle Amphiphiles in Selective Solvents[J]. Acta Polymerica Sinica, ;2018, 0(10): 1351-1358. doi: 10.11777/j.issn1000-3304.2018.18072 shu

Self-assembly of Polymer-grafted Nanoparticle Amphiphiles in Selective Solvents

  • Corresponding author: Bao-hui Li, baohui@nankai.edu.cn
  • Received Date: 2 March 2018
    Revised Date: 3 April 2018
    Available Online: 9 July 2018

  • We performed Brownian dynamics simulations with implicit solvent to study the self-assembly of polymer-grafted nanoparticle amphiphiles in selective solvents. Each model amphiphile consists of one hydrophobic nanoparticle (H) bead and one hydrophilic polymer chain composed of P-beads. The diameter of each H-bead is varied from one to several times that of each P-bead. The influences of experimental conditions on the self-assembled morphologies are investigated. The experimental conditions studied include the amphiphile concentration, the size of the hydrophobic head, the interaction parameters between the hydrophilic bead and hydrophobic bead, the polymer chain length and the solvent. Various self-assembled morphologies are obtained, including conventional spherical micelles, cylindrical micelles, cylindrical networks, large compound micelles, thin sheets, spherical vesicles, and novel ones of tubular vesicles, cylindrical multicompartment vesicles, and spherical multicompartment vesicles. The morphological phase diagrams are constructed as a function of different parameters. Mechanisms of morphological formation are discussed. Two pathways, mechanisms I and II, of vesicle formation are identified. In mechanism I, the model amphiphiles first self-assemble into spherical micelles, which transform into cylindrical micelles, further into bilayer-sheets, and finally the sheets bend around and close up to form vesicles. In mechanism II, in the initial stage of simulation, the model amphiphiles first self-assemble into many small spherical aggregates, inside which the hydrophilic P-beads are mixing with hydrophobic H-beads. Subsequently, neighboring aggregates coalesce together, and microphase separation between H and P beads occurs in the interior of the aggregates, resulting in a concentration of P-beads at the center of the aggregates, i.e., the formation of semivesicles. As simulation proceeds further, the semivesicles grow larger, and more and more P-beads enter into the inner of the semivesicles, and finally semivesicles expand outward, forming vesicles. Furthermore, transition from mechanism II to mechanism I can occur by increasing amphiphile concentration. At low amphiphile concentration, the attractions among the hydrophobic H-beads are dominant in the system. In this case, mechanism II occurs during vesicle formation. At high amphiphile concentration, repulsion among the hydrophilic P-beads dominates the system where bilayer-sheets occur as an intermediate state of the vesicle formation and thus mechanism I occurs. The simulation results are compared with available experimental and simulation results obtained from related systems.
  • 加载中
    1. [1]

      Yu X F, Zhang W B, Yue K, Li X P, Liu H, Xin Y, Wang C L, Wesdemiotis C, Cheng S. J Am Chem Soc, 2012, 134(18): 7780 − 7787

    2. [2]

      Kawauchi T, Kumaki J, Yashima E. J Am Chem Soc, 2005, 127(28): 9950 − 9951

    3. [3]

      Yu X F, Zhong S, Li X P, Tu Y F, Yang S G, van Horn R M, Ni C Y, Pochan D J, Quirk R P, Wesdemiotis C, Zhang W B, Cheng S. J Am Chem Soc, 2010, 132(47): 16741 − 16744

    4. [4]

      Zhang W, Fang B, Walther A, Müller A H E. Macromolecules, 2009, 42(7): 2563 − 2569

    5. [5]

      Wang Z, Li Y, Dong X, Yu X, Guo K, Su H, Yue K, Wesdemiotis C, Cheng S Z D, Zhang W. Chem Sci, 2013, 4(3): 1345 − 1352

    6. [6]

      Li W, Thanneeru S, Kanyo I, Liu B, He J. ACS Macro Lett, 2015, 4(7): 736 − 740

    7. [7]

      Zhang Y, Zhao H Y. Langmuir, 2016, 32(15): 3567 − 3579

    8. [8]

      Wen J, Zhang J, Zhang Y, Yang Y, Zhao H C. Polym Chem, 2014, 5(13): 4032 − 4038

    9. [9]

      Yu X, Li Y, Dong X H, Yue K, Lin Z W, Feng X Y, Huang M J, Zhang W B, Cheng S Z D. J Polym Sci, Part B: Polym Phys, 2014, 52(20): 1309 − 1325

    10. [10]

      Zhang W B, Yu X F, Wang C L, Sun H J, Hsieh I F, Li Y W, Dong X H, Yue K, van Horn R, Cheng S Z D. Macromolecules, 2014, 47(4): 1221 − 1239

    11. [11]

      Mai Y, Eisenberg A. Chem Soc Rev, 2012, 41(18): 5969 − 5985

    12. [12]

      Shen H W, Eisenberg A. J Phys Chem B, 1999, 103(44): 9473 − 9487

    13. [13]

      Du B, Mei A, Yin K, Zhang Q, Xu J, Fan Z. Macromolecules, 2009, 42(21): 8477 − 8484

    14. [14]

      Li Q, Wang Z, Yin Y, Jiang R, Li B. Macromolecules, 2018, 51(8): 3050 − 3058

    15. [15]

      Li W K, Kuo C H, Kanyo I, Thanneeru S, He J. Macromolecules, 2014, 47(17): 5932 − 5941

    16. [16]

      Li B, Zhao L, Qian H J, Lu Z Y. Soft Matter, 2014, 10(13): 2245 − 2252

    17. [17]

      Anderson J A, Travesset A. Macromolecules, 2006, 39(15): 5143 − 5151

    18. [18]

      Grest G S, Kremer K. Phys Rev A, 1986, 33(5): 3628 − 3631

    19. [19]

      Anderson J A, Lorenz C D, Travesset A. J Comput Phys, 2008, 227(10): 5342 − 5359

    20. [20]

      Glaser J, Nguyen T D, Anderson J A, Liu P, Spiga F, Millan J A, Morse D C, Glotzer S C. Comput Phys Commun, 2015, 192: 97 − 107

    21. [21]

      Zhu Y, Liu H, Li Z, Qian H, Milano G, Lu Z. J Comput Chem, 2013, 34(25): 2197 − 2211

    22. [22]

      Zhu Y, Pan D, Li Z, Liu H, Qian H, Zhao Y, Lu Z, Sun Z. Mol Phys, 2018, 116(7-8): 1065 − 1077

    23. [23]

      Ma S, Hu Y, Wang R. Macromolecules, 2015, 48(9): 3112 − 3120

    24. [24]

      Zhang L F, Eisenberg A. Science, 1995, 268(5218): 1728 − 1731

    25. [25]

      Sun P, Yin Y, Li B, Chen T, Jin Q, Ding D. J Chem Phys, 2005, 122(20): 204905

    26. [26]

      Song Y, Jiang R, Wang Z, Wang L, Yin Y, Li B, S hi, A C. Macromol Theory Simul, 2016, 25(6): 559 − 570

    27. [27]

      Uneyama T. J Chem Phys, 2007, 126(11): 11490

    28. [28]

      Xiao M, Xia G, Wang R, Xie D. Soft Matter, 2012, 8(30): 7865 − 7874

    29. [29]

      Huang J H, Wang Y, Qian C. J Chem Phys, 2009, 131(23): 234902

    30. [30]

      Han Y, Yu H, Du H, Jiang W. J Am Chem Soc, 2010, 132(3): 1144 − 1150

    31. [31]

      He X, Liang H, Huang L, Pan C. J Phys Chem B, 2004, 108(5): 1731 − 1735

    32. [32]

      He X, Schmid F. Macromolecules, 2006, 39(7): 2654 − 2662

    33. [33]

      He X, Schmid F. Phys Rev Lett, 2008, 100(13): 137802

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    6. [6]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    9. [9]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    10. [10]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    11. [11]

      Tiantian Dai Xi Yang . Teaching Design and Reflection on the “Osmotic Pressure of Solutions” in Medical Chemistry. University Chemistry, 2025, 40(5): 268-275. doi: 10.12461/PKU.DXHX202411032

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    14. [14]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    15. [15]

      Cheng Rong Jiang Jiang Xinyu Zheng . Constructivism and Deconstructivism in General Chemistry Teaching: Taking the Teaching of Colloidal Solutions as an Example. University Chemistry, 2024, 39(2): 292-297. doi: 10.3866/PKU.DXHX202308035

    16. [16]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    17. [17]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    18. [18]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    19. [19]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    20. [20]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

Metrics
  • PDF Downloads(0)
  • Abstract views(109)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return