Citation: Guo-song Chen, Ping Yao, Dao-yong Chen. Further Expansions and Applications of the Principles and Methodology of Non-covalent Connected Micelles[J]. Acta Polymerica Sinica, ;2018, 0(8): 1048-1065. doi: 10.11777/j.issn1000-3304.2018.18064 shu

Further Expansions and Applications of the Principles and Methodology of Non-covalent Connected Micelles

  • At the end of the last century, Professor Jiang Ming et al. succeeded in fabricating regular nanostructures through localizing interactions in the systems of polymer complexes. Through continuous expansion and deepening of this principle and method, a new strategy of macromolecular self-assembly was established. This review summarizes recent developments and applications of non-covalently connected micelles (NCCMs), including: Introducing of new driving forces such as supramolecular interactions to drive the formation of NCCMs, providing the resultant NCCMs with new features and functions; Applying the principle to the self-assembly of biological macromolecules, thereby developing an entirely green route to self-assembly of macromolecules; Also, through localizing covalent crosslinking reaction of one block of a diblock copolymer, we realized micellization of the block copolymer in its common solvent induced by the crosslinking reaction, resulting in highly efficient fabrication of core-stabilized micelles as well as a new pathway for controlling the kinetics of polymer micellization, the structures and the properties of the polymeric micelles.
  • 加载中
    1. [1]

      Jiang M, Xie H. Prog Polym Sci, 1991, 16(6): 977-1026

    2. [2]

      Jiang M, Li M, Zhou H. Adv Polym Sci, 1999, 146: 121-196

    3. [3]

      Zhang L, Eisenberg A. Science, 1995, 268(5128): 1728-1731

    4. [4]

      Kelley E, Albert J, Sullivan M, Epps III T. Chem Soc Rev, 2013, 42(17): 7057-7071

    5. [5]

      Stefik M, Guldin S, Vignolini S, Wiesner U, Steiner Ullrich. Chem Soc Rev, 2015, 44(15): 5076-5091

    6. [6]

      Yoo, H, Byun M, Jeong C, Lee K. Adv Mater, 2015, 27(27): 3982-3998.

    7. [7]

      Liu S, Pan Q, Xie J, Jiang M. Polymer, 2000, 41(18): 6919-6929

    8. [8]

      Liu S, Jiang M, Liang H, Wu C. Polymer, 2000, 41(24): 8697-8702

    9. [9]

      Wang M, Zhang G, Chen, D, Jiang, M, Liu S. Macromolecules, 2001, 34(20): 7172-7178

    10. [10]

    11. [11]

      Guo M, Jiang M. Soft Matter, 2009, 5(3): 495-500

    12. [12]

      Chen G, Jiang M. Chem Soc Rev, 2011, 40(5): 2254-2266

    13. [13]

      Liu Y, Chen Y. Acc Chem Res, 2006, 39(10): 681-691.

    14. [14]

      Wang J, Jiang M. J Am Chem Soc, 2005, 128(11): 3703-3708

    15. [15]

      Guo M, Jiang M, Zhang G. Langmuir, 2008, 24(19): 10583-10586

    16. [16]

      Lehn J. Chem Soc Rev, 2007, 36(2): 151-160

    17. [17]

      Zou J, Tao F, Jiang M. Langmuir, 2007, 23(26): 12791-12794

    18. [18]

      Zou J, Guan B, Liao X, Jiang M, Tao F. Macromolecules, 2009, 42(19): 7465-7473

    19. [19]

      Wang Y, Ma N, Wang Z, Zhang X. Angew Chem Int Ed, 2007, 46(16): 2823-2826

    20. [20]

      Zhang X, Wang C. Chem Soc Rev, 40(1): 94-101

    21. [21]

      Li J, Harada A, Kamachi M. Polym J, 1994, 26(9): 1019-1026

    22. [22]

      Liao X, Chen G, Liu X, Chen W, Chen F, Jiang M. Angew Chem, 2010, 122(26): 4511-4515

    23. [23]

      Guo M, Jiang M, Pispas S, Zhou C. Macromolecules, 2008, 41(24): 9744-9749.

    24. [24]

      Liu J, Chen G, Guo M, Jiang M. Macromolecules, 2010, 43(19): 8086-8093.

    25. [25]

      Wei K, Li J, Liu J, Chen G, Jiang M. Soft Matter, 2012, 8(12): 3300-3303

    26. [26]

      Liu J, Chen G, Jiang, M. Macromolecules, 2011, 44(19): 7682-7691

    27. [27]

      Liao X, Chen G, Jiang M. Langmuir, 2011, 27(20): 12650-12656

    28. [28]

      Du P, Chen G, Jiang, M. Sci China Chem, 2012, 55(5): 836-843

    29. [29]

      Wei K, Li J, Chen G, Jiang M. ACS Macro Lett, 2013, 2(3): 278-283

    30. [30]

      Zhang J, Ma P. Angew Chem Int Ed, 2009, 48(5): 964-968

    31. [31]

      Yan Q, Yuan J, Cai Z, Xin Y, Kang Y, Yin, Y. J Am Chem Soc, 2010, 132(27): 9268-9270

    32. [32]

      Meng X, Qin J, Liu Y, Fan M, Li B, Zhang S, Yu X. Chem Commun, 2010, 46(4): 643-645

    33. [33]

      Dong H, Li Y, Cai S, Zhuo R, Zhang X, Liu L. Angew Chem Int Ed, 2008, 47(30): 5573-5576

    34. [34]

      Zeng J, Shi K, Zhang Y, Sun X, Zhang B. Chem Commun, 2008,44(32): 3753-3755

    35. [35]

      Ringsdorf H, Schlarb B, Venzmer J. Angew Chem Int Ed, 1988, 27(1):113-158

    36. [36]

      Widnell C, Hamilton T, Tata J. J Cell Biol, 1967, 32(3): 766-770

    37. [37]

      Blow N. Nature, 2009, 457(7229): 617-620.

    38. [38]

      Bertozzi C, Kiessling L. Science, 2001, 291(5512): 2357-2364

    39. [39]

      Paszek M J, et al. Nature, 2014, 511(7509): 319-325

    40. [40]

      Ladmiral V, Mantovani G, Clarkson G J, Solene C, Irwin J L, Haddleton D M. J Am Chem Soc, 2006, 128(44):4823-4830

    41. [41]

    42. [42]

      Su L, Zhao Y, Chen G, Jiang M. Polym Chem, 2012, 3(6): 1560-1566

    43. [43]

      Su L, Wang C, Polzer F, Lu Y, Chen G, Jiang M. ACS Macro Lett, 2014, 3(6): 534-539

    44. [44]

      Wu X, Su L, Chen G, Jiang M. Macromolecules, 2015, 48(11): 3705-3712

    45. [45]

      Su L, Zhang W, Wu X, Zhang Y, Chen X, Liu G, Chen G, Jiang M. Small, 2015, 11(33): 4191-4200

    46. [46]

      Lin M, Zhang Y, Chen G, Jiang M. Small. 2015,11(45): 6065-6070

    47. [47]

      Sakai F, Yang G, Weiss, Liu Y, Chen G, Jiang M. Nat Commun, 2014, 5(8): 4634

    48. [48]

      Yang G, Zhang X, Kochovski Z, Zhang Y, Dai B, Sakai F, F, Ballauff M, Li X, Liu C, Chen G, Jiang M. J Am Chem Soc, 2016, 138(6): 1932-1937

    49. [49]

      Yang G, Ding H, Kochovski Z, Hu R, Lu Y, Ma Y, Chen G, Jiang M. Angew Chem Int Ed, 2017, 56(36): 10691-10695

    50. [50]

      Yu S, Hu J, Pan X, Yao P, Jiang M. Langmuir, 2006, 22(6): 2754-2759

    51. [51]

      Hu J, Yu S, Yao P. Langmuir 2007, 23(11): 6358-6364

    52. [52]

      Yu S, Yao P, Jiang M, Zhang G. Biopolymers, 2006, 83(2): 148-158

    53. [53]

      Pan X, Yu S, Yao P, Shao Z. J Colloid Interface Sci, 2007, 316(2): 405-412

    54. [54]

      Ding X, Yao P. Langmuir, 2013, 29(27): 8636-8644

    55. [55]

      Simo O K, Mao Y, Tokle T, Decker E A, McClements D J. Food Res Int , 2012, 48(2): 337-345

    56. [56]

      Li J, Yu S, Yao P, Jiang M. Langmuir, 2008, 24(7): 3486-3492

    57. [57]

      Li J, Yao P. Langmuir, 2009, 25(11): 6385-6391

    58. [58]

      Hao H, Yao P. Chem J Chinese U, 2014, 35(3): 652-659

    59. [59]

      Deng W, Li J, Yao P, He F, Huang C. Macromol Biosci, 2010, 10(10): 1224-1234

    60. [60]

      Qi J, Yao P, He F, Yu C, Huang C. Int J Pharm, 2010, 393(1): 176-184

    61. [61]

      Mu M, Pan X, Yao P, Jiang M. J Colloid Interface Sci, 2006, 301(1): 98-106

    62. [62]

      Pan X, Mu M, Hu B, Yao P, Jiang M. Biopolymers, 2006, 81(1): 29-38

    63. [63]

      Pan X, Yao P, Jiang M. J Colloid Interface Sci, 2007, 315(2): 456-463

    64. [64]

      Hao H, Ma Q, Huang C, He F, Yao P. Int J Pharm, 2013, 444(1): 77-84

    65. [65]

      Hao, H, Ma, Q, He, F, Yao, P. J Mater Chem B, 2014, 2(45): 7978-7987

    66. [66]

      Cai H, Yao P. Nanoscale, 2013, 5(7): 2892-2900

    67. [67]

      Li C, Liu Z, Yao P. Rsc Adv, 2016, 6(39): 33083-33091

    68. [68]

      Chen D, Peng H, Jiang M. Macromolecules, 2003, 36(8): 2576-2578

    69. [69]

      Hui T, Chen D, Jiang M. Macromolecules, 2005, 38(13): 5834-5837

    70. [70]

      Gu C, Chen D, Jiang M. Macromolecules, 2004, 37(4): 1666-1669

    71. [71]

      Jia X, Chen D, Jiang M. Chem Commun, 2006,52(16): 1736-1738

    72. [72]

      Yang Q, Wu J, Xu Z. Chen D.Polym Chem, 2015, 6(10): 1688-1692

    73. [73]

      Peng H, Chen D, Jiang M. Macromolecules, 2005, 38(9): 3550-3553

    74. [74]

      Wang L, Wang Y, Miao H, Chen D. Soft Matter, 2016, 12(22): 4891-4895

    75. [75]

      Ji J, Fan Y, Jiang M, Chen D. Soft Matter, 2012, 8(33): 8636-8641

    76. [76]

      Cheng L, Hou G, Miao J, Chen D, Jiang M, Zhu L. Macromolecules, 2008, 41 (21): 8159-8166

  • 加载中
    1. [1]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    2. [2]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    3. [3]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    6. [6]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    7. [7]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    8. [8]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    9. [9]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    10. [10]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    11. [11]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    12. [12]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    13. [13]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    14. [14]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    15. [15]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    16. [16]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    17. [17]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    18. [18]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    19. [19]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    20. [20]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

Metrics
  • PDF Downloads(0)
  • Abstract views(108)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return