Citation: Jin Li, Wen-wen Wang, Li-qiang Chu. Self-assembly of Protein-Polymer Conjugate on Gold Surface Studied by Surface Plasmon Resonance Spectroscopy[J]. Acta Polymerica Sinica, ;2018, 0(10): 1328-1335. doi: 10.11777/j.issn1000-3304.2018.18063 shu

Self-assembly of Protein-Polymer Conjugate on Gold Surface Studied by Surface Plasmon Resonance Spectroscopy

  • Corresponding author: Li-qiang Chu, chuliqiang@tust.edu.cn
  • Received Date: 13 February 2018
    Revised Date: 29 March 2018
    Available Online: 6 September 2018

  • Recently, protein-polymer conjugates, which combine protein molecules with one or more specific polymer chains at certain position, have attracted a great deal of attention due to their unique properties of both the proteins and the polymers. Therefore, the objective of this work is to study the self-assembly behavior of protein-polymer conjugates on a planar gold substrate, in which bovine serum albumin (BSA) is employed as the anchoring point for self-assembly process. We first prepare an initiator, 2-bromo-2-methylpropionic acid-2-aminooxy ethyl ester (ABM), which can be linked to the N-terminal of BSA modified by pyridoxal-5-phosphate (PLP), giving rise to a macroinitiator (i.e., BSA-Br). Then BSA-POEGMA conjugate is obtained by atom transfer radical polymerization (ATRP) using oligo(ethylene glycol) methacrylate (OEGMA) as monomer and the BSA-Br as macroinitiator, respectively. All products are characterized by Fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). FTIR and MALDI-TOF-MS results indicate that one POEGMA chain with a polymerization degree of 218 is coupled to the N-terminal of BSA. The adsorption behaviors of both the BSA and the BSA-POEGMA conjugate on gold surfaces are studied by using surface plasmon resonance spectroscopy (SPR). The data suggest that the BSA-POEGMA conjugate could be adsorbed to the gold substrate at the same way as the pure BSA molecule as expected, while the hydrophilic POEGMA chain is directed to the opposite of gold surface. At last, the adsorption behaviors of two model proteins (i.e., lysozyme, Lys and fibrinogen, Fib) on the BSA-POEGMA conjugate are also investigated. SPR data indicate that there is a decrease in Lys adsorption on the BSA-POEGMA compared to pure BSA layer. In contrast, Fib adsorption on the BSA-POEGMA conjugate increase slightly in comparison with that on pure BSA. The results clearly show the influence of POEGMA chain on the surface property of BSA molecule, which may be attributed to the water layer associated with the POEGMA chains.
  • 加载中
    1. [1]

      Wilson P. Macromol Chem Phys, 2017, 218(9): 1600595

    2. [2]

      Cobo I, Li M, Sumerlin B S, Perrier S. Nat Mater, 2015, 14(2): 143 − 159

    3. [3]

      Borchmann D E, Carberry T P, Weck M. Macromol Rapid Commun, 2014, 35(1): 27 − 43

    4. [4]

      He Naipu

    5. [5]

      Zhao W G, Liu F, Chen Y, Bai J, Gao W P. Polymer, 2015, 66: A1 − A10

    6. [6]

      Pelegri-O'day E M, Lin E W, Maynard H D. J Am Chem Soc, 2014, 136(41): 14323 − 14332

    7. [7]

      Srivastava A, O'connor L B, Pandit A, Wall J G. Prog Polym Sci, 2014, 39(2): 308 − 329

    8. [8]

      Ozer I, Chilkoti A. Bioconjugate Chem, 2017, 28(3): 713 − 723

    9. [9]

      Gao W P, Liu W G, Christensen T, Zalutsky M R, Chilkoti A. Proc Natl Acad Sci USA, 2010, 107(38): 16432 − 16437

    10. [10]

      Jiang Zhongyi

    11. [11]

      Pelegri-O’day E M, Maynard H D. Acc Chem Res, 2016, 49(9): 1777 − 1785

    12. [12]

      Nauka P C, Lee J, Maynard H D. Polym Chem, 2016, 7(13): 2352 − 2357

    13. [13]

      Broyer R M, Grover G N, Maynard H D. Chem Commun, 2011, 47(8): 2212 − 2226

    14. [14]

      Lutz J F, Borner H G. Prog Polym Sci, 2008, 33(1): 1 − 39

    15. [15]

      Nicolas J, Mantovani G, Haddleton D M. Macromol Rapid Commun, 2007, 28(10): 1083 − 1111

    16. [16]

      Qi Y Z, Chilkoti A. Polym Chem, 2014, 5(2): 266 − 276

    17. [17]

      Sumerlin B S. ACS Macro Letters, 2012, 1(1): 141 − 145

    18. [18]

      Averick S E, Bazewicz C G, Woodman B F, Simakova A, Mehl R A, Matyjaszewski K. Eur Polym J, 2013, 49(10): 2919 − 2924

    19. [19]

      Khandare J, Minko T. Prog Polym Sci, 2006, 31(4): 359 − 397

    20. [20]

      Marsac Y, Cramer J, Olschewski D, Alexandrov K, Becker C F W. Bioconjugate Chem, 2006, 17(6): 1492 − 1498

    21. [21]

      Jiang Y Y, Lu H X, Chen F, Callari M, Pourgholami M, Morris D L, Stenzel M H. Biomacromolecules, 2016, 17(3): 808 − 817

    22. [22]

      Nischan N, Hackenberger C P R. J Org Chem, 2014, 79(22): 10727 − 10733

    23. [23]

      Milla P, Dosio F, Cattel L. Curr Drug Metab, 2012, 13(1): 105 − 119

    24. [24]

      Chu L Q, Zhang Q, Foerch R. Plasma Process Polym, 2015, 12(9): 941 − 952

    25. [25]

      Homola J. Chem Rev, 2008, 108(2): 462 − 493

    26. [26]

      Xu Xinhua

    27. [27]

      Knoll W. Annu Rev Phys Chem, 1998, 49: 569 − 638

    28. [28]

      Lin Qingjie

    29. [29]

      Gilmore J M, Scheck R A, Esser-Kahn A P, Joshi N S, Francis M B. Angew Chem Int Ed, 2006, 45(32): 5307 − 5311

    30. [30]

      Gao W, Liu W, Mackay J A, Zalutsky M R, Toone E J, Chilkoti A. Proc Natl Acad Sci USA, 2009, 106(36): 15231 − 15236

    31. [31]

      Chu L Q, Knoll W, Forch R. Chem Mater, 2006, 18(20): 4840 − 4844

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    5. [5]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    6. [6]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    7. [7]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    8. [8]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    9. [9]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    10. [10]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    11. [11]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    12. [12]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    13. [13]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    14. [14]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    16. [16]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    17. [17]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    18. [18]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    19. [19]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(0)
  • Abstract views(107)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return