Citation: Ze-ping Zhang, Min-zhi Rong, Ming-qiu Zhang. Research Progress of Processing of Crosslinked Polymers Based on Reversible Covalent Chemistry: a New Challenge to the Development of Polymer Engineering[J]. Acta Polymerica Sinica, ;2018, 0(7): 829-852. doi: 10.11777/j.issn1000-3304.2018.18060 shu

Research Progress of Processing of Crosslinked Polymers Based on Reversible Covalent Chemistry: a New Challenge to the Development of Polymer Engineering

  • Reversible covalent polymers are able to reorganize their topological structures via reversible reactions triggered by external stimuli (including heating, light and pH), while retaining the stability of irreversible covalent polymers in the absence of the stimuli. Because the transformation only deals with polymerized materials and can be conducted mostly in solid state in the absence of solvents, environmentally friendly and energy saving measures, like self-healing that autonomously repairs damages created during fabrication or usage, have been proposed. In the meantime, many researchers are also devoted to using this feature for solving processing problems of crosslinked polymers. It not only breaks through the strict limits of traditional thermoplastic and thermosetting polymers, but also brings in new methods and new functionalities. As a result, material diversification with extended life cycles becomes available. A series of novel prototype techniques specified for the crosslinked polymers containing reversible covalent bonds are developed accordingly, which include mechanical properties regulation, plastic deformation, welding, dispersion of nano-fillers and their reinforcement effect, compression molding, injection molding, extrusion molding, 3D printing, controllable degradation and reprocessing of carbon fibre reinforced composites. Quite a few engineering processes that cannot be realized by means of existing industrial methods come true. Clearly, the research achievements in this area represent possible advancement of classic polymer engineering. In this review, basis of reversible covalent chemistry and rheology of reversible covalent polymer are comprehensively elucidated and analysed, followed by summarizing the applications of above prototype techniques on the basis of the types of the reversible reactions involved (i.e. general reversible reactions and dynamic reversible reactions). Moreover, the challenges and development trend of this emerging field are also outlined. On the whole, the innovative knowledge paths are managed to be introduced in a systematic way. It is hoped that more and more scientists will be attracted and join in this promising research.
  • 加载中
    1. [1]

      Corbett P T, Leclaire J, Vial L, West K R, Wietor J L, Sanders J K M. Chem Rev, 2006, 106(9): 3652-3711  doi: 10.1021/cr020452p

    2. [2]

      Lehn J M. Chem Soc Rev, 2007, 36(2): 151-160  doi: 10.1039/B616752G

    3. [3]

      Wei Z, Yang J H, Zhou J, Xu F, Zrínyi M, Dussault P H, Osadag Y, Chen Y M. Chem Soc Rev, 2014, 43(23): 8114-8131  doi: 10.1039/C4CS00219A

    4. [4]

      Engle L P, Wagener K B. J Macromol Sci Pol R, 1993, 33(3): 239-257  doi: 10.1080/15321799308021436

    5. [5]

      Yin Hong(殷红), Li Xiaoyu(李效玉). Polym Mater Sci Eng(高分子材料科学与工程), 2000, 16(6): 24-27

    6. [6]

      Jin Y, Yu C, Denman R J, Zhang W. Chem Soc Rev, 2013, 42(16): 6634-6654  doi: 10.1039/c3cs60044k

    7. [7]

      Johnson A F, Coates P D, Brown M W R. Reactive Processing of Polymers. Billingham: Rapra Technology Ltd, 1993

    8. [8]

      Cassagnau P, Bounor-Legaré V, Fenouillot F. Int Polym Proc, 2007, 22(3): 218-258  doi: 10.3139/217.2032

    9. [9]

      Jog J P. Adv Polym Tech, 1993, 12(3): 281-289  doi: 10.1002/adv.1993.060120306

    10. [10]

      Ward I M, Coates P D, Dumoulin M M. Solid Phase Processing of Polymers. Munich: Hanser Publishers, 2000

    11. [11]

      Zheng Ning(郑宁), Xie Tao(谢涛). Acta Polymerica Sinica(高分子学报), 2017, (11): 1715-1724

    12. [12]

      Hentschel J, Kushner A M, Ziller J, Guan Z. Angew Chem, 2012, 124(42): 10713-10717  doi: 10.1002/ange.201204840

    13. [13]

      Zhang M, Xu D, Yan X, Chen J, Dong S, Zheng B, Huang F. Angew Chem, 2012, 124(28): 7117-7121  doi: 10.1002/ange.201203063

    14. [14]

      Montarnal D, Capelot M, Tournilhac F, Leibler L. Science, 2011, 334(6058): 965-968  doi: 10.1126/science.1212648

    15. [15]

      Capelot M, Unterlass M M, Tournilhac F, Leibler L. ACS Macro Lett, 2012, 1(7): 789-792  doi: 10.1021/mz300239f

    16. [16]

      Xu W M, Rong M Z, Zhang M Q. J Mater Chem A, 2016, 4(27): 10683-10690  doi: 10.1039/C6TA02662A

    17. [17]

      Taynton P, Yu K, Shoemaker R K, Jin Y, Qi H J, Zhang W. Adv Mater, 2014, 26(23): 3938-3942  doi: 10.1002/adma.201400317

    18. [18]

      Maeda T, Otsuka H, Takahara A. Prog Polym Sci, 2009, 34(7): 581-604  doi: 10.1016/j.progpolymsci.2009.03.001

    19. [19]

      Kloxin C J, Scott T F, Adzima B J, Bowman C N. Macromolecules, 2010, 43(6): 2643-2653  doi: 10.1021/ma902596s

    20. [20]

      Bowman C N, Kloxin C J. Angew Chem Int Ed, 2012, 51(18): 4272-4274  doi: 10.1002/anie.201200708

    21. [21]

      Zhang Y, Broekhuis A A, Picchioni F. Macromolecules, 2009, 42(6): 1906-1912  doi: 10.1021/ma8027672

    22. [22]

      Scott T F, Schneider A D, Cook W D, Bowman C N. Science, 2005, 308(5728): 1615-1617  doi: 10.1126/science.1110505

    23. [23]

      Nicolay R, Kamada J, van Wassen A, Matyjaszewski K. Macromolecules, 2010, 15, 43(9): 4355-4361

    24. [24]

      Amamoto Y, Kamada J, Otsuka H, Takahara A, Matyjaszewski K. Angew Chem, 2011, 123(7): 1698-701  doi: 10.1002/ange.201003888

    25. [25]

      Amamoto Y, Otsuka H, Takahara A, Matyjaszewski K. Adv Mater, 2012, 24(29): 3975-3980  doi: 10.1002/adma.v24.29

    26. [26]

      Gasparini G, Dal Molin M, Lovato A, Prins L J. Dynamic Covalent Chemistry. In: Steed J W, Gale P A, eds. Supramolecular Chemistry: From Molecules to Nanomaterials, Hoboken: John Wiley & Sons, Ltd, 2012. 1497-1526

    27. [27]

      Rowan S J, Cantrill S J, Cousins G R, Sanders J K, Stoddart J F. Angew Chem Int Ed, 2002, 41(6), 898-952  doi: 10.1002/1521-3773(20020315)41:6<>1.0.CO;2-R

    28. [28]

      Schrock R R. J Mol Catal A-Chem, 2004, 213(1): 21-30  doi: 10.1016/j.molcata.2003.10.060

    29. [29]

      Vougioukalakis G C, Grubbs R H. Chem Rev, 2009, 110(3): 1746-1787

    30. [30]

      Lei Z Q, Xiang H P, Yuan Y J, Rong M Z, Zhang M Q. Chem Mater, 2014, 26(6): 2038-2046  doi: 10.1021/cm4040616

    31. [31]

      Ying H, Zhang Y, Cheng J. Nat Commun: 2014, 5, 3218

    32. [32]

      Hutchby M, Houlden C E, Haddow M F, Tyler S N, Lloyd-Jones G C, Booker-Milburn K I. Angew Chem Int Ed, 2012, 51(2): 548-551

    33. [33]

      Miura Y, Nakamura N, Taniguchi I. Macromolecules, 2001, 4(3): 447-455

    34. [34]

      Mannan M A, Ichikawa A, Miura Y. Polymer, 2007, 48(3): 743-749  doi: 10.1016/j.polymer.2006.12.002

    35. [35]

      Imato K, Nishihara M, Kanehara T. Angew Chem Int Ed, 2012, 51(5): 1138-1142  doi: 10.1002/anie.201104069

    36. [36]

      Imato K, Takahara A, Otsuka H. Macromolecules, 2015, 48(16): 5632-5639  doi: 10.1021/acs.macromol.5b00809

    37. [37]

      Frenette M, Aliaga C, Font-Sanchis E, Scaiano J C. Org Lett, 2004, 6(15): 2579-2582  doi: 10.1021/ol049111j

    38. [38]

      Zhang Z P, Rong M Z, Zhang M Q, Adv Funct Mater, 2017, 28(11): 1706050/1-8

    39. [39]

      McElhanon J R, Wheeler D R. Org Lett, 2001, 3(17): 2681-2683  doi: 10.1021/ol0101281

    40. [40]

      Gandini A. Macromolecules, 2008, 41(24): 9491-9504  doi: 10.1021/ma801735u

    41. [41]

      Zhang Z P, Rong M Z, Zhang M Q, Yuan C. Polym Chem, 2013, 4(17): 4648-4654  doi: 10.1039/c3py00679d

    42. [42]

      Zhang Z P, Rong M Z, Zhang M Q. Polymer, 2014, 55(16): 3936-3943  doi: 10.1016/j.polymer.2014.06.064

    43. [43]

      Zhang Z P, Lu Y, Rong M Z, Zhang M Q. RSC Adv, 2016, 6(5): 6350-6357

    44. [44]

      Kalia J, Raines R T. Angew Chem, 2008, 120(39): 7633-7636  doi: 10.1002/ange.v120:39

    45. [45]

      Xin Y, Yuan J. Polym Chem, 2012, 3(11): 3045-3055  doi: 10.1039/c2py20290e

    46. [46]

      Cambre J N, Sumerlin B S. Polymer, 2011, 52(21): 4631-4643  doi: 10.1016/j.polymer.2011.07.057

    47. [47]

      Cromwell O R, Chung J, Guan Z. J Am Chem Soc, 2015, 137(20), 6492-6495  doi: 10.1021/jacs.5b03551

    48. [48]

      Nishimura Y, Chung J, Muradyan H, Guan Z. J Am Chem Soc, 2017, 139(42): 14881-14884  doi: 10.1021/jacs.7b08826

    49. [49]

      Skene W G, Belt S T, Connolly T J, Hahn P, Scaiano J C. Macromolecules, 1998, 31(25): 9103-9105  doi: 10.1021/ma9812229

    50. [50]

      Sobek J, Martschke R, Fischer H. J Am Chem Soc, 2001, 123(12): 2849-2857  doi: 10.1021/ja0036460

    51. [51]

      Marque S. J Org Chem, 2003, 68(20): 7582-7590  doi: 10.1021/jo030036k

    52. [52]

      Li L, Hamer G K, Georges M K. Macromolecules, 2006, 39(26): 9201-9207  doi: 10.1021/ma061700c

    53. [53]

      Xin Y, Yuan J. Polym Chem, 2012, 3(11): 3045-3055  doi: 10.1039/c2py20290e

    54. [54]

      Zhang Y, Tao L, Li S, Wei Y. Biomacromolecules, 2011, 12(8): 2894-2901  doi: 10.1021/bm200423f

    55. [55]

      Tseng T C, Tao L, Hsieh F Y, Wei Y, Chiu I M, Hsu S H. Adv Mater, 2015, 27(23): 3518-3524  doi: 10.1002/adma.v27.23

    56. [56]

      Taynton P, Ni H, Zhu C, Yu K, Loob S, Jin Y, Qi H J, Zhang W. Adv Mater, 2016, 28(15): 2904-2909  doi: 10.1002/adma.201505245

    57. [57]

      Ciaccia M, Pilati S, Cacciapaglia R, Mandolini L, Di Stefano S. Org Biomol Chem, 2014, 12(20): 3282-3287  doi: 10.1039/C4OB00107A

    58. [58]

      Lei Z Q, Xie P, Rong M Z, Zhang M Q. J Mater Chem A, 2015, 3(39): 19662-19668  doi: 10.1039/C5TA05788D

    59. [59]

      Lomellini P. Makromol Chem, 1992, 193(1): 69-79  doi: 10.1002/macp.1992.021930107

    60. [60]

      Williams M L, Landel R F, Ferry J D. J Am Chem Soc, 1955, 77(14): 3701-3707  doi: 10.1021/ja01619a008

    61. [61]

      Dyre J C. Rev Mod Phys, 2006, 78(3): 953-972  doi: 10.1103/RevModPhys.78.953

    62. [62]

      Matějka L. Polym Bull, 1991, 26(1): 109-116  doi: 10.1007/BF00299355

    63. [63]

      Muller R, Gerard E, Dugand P, Rempp P, Gnanou Y. Macromolecules, 1991, 24(6): 1321-1326  doi: 10.1021/ma00006a017

    64. [64]

      Flory P J. J Am Chem Soc, 1941, 63(11): 3083-3090  doi: 10.1021/ja01856a061

    65. [65]

      Stockmayer W H. J Chem Phys, 1943, 11(2): 45-55  doi: 10.1063/1.1723803

    66. [66]

      Zhao Q, Zou W, Luo Y, Xie T. Sci Adv, 2016, 2(1): e1501297  doi: 10.1126/sciadv.1501297

    67. [67]

      Zheng N, Fang Z, Zou W, Zhao Q, Xie T. Angew Chem Int Ed, 2016, 55(38): 11421-11425  doi: 10.1002/anie.201602847

    68. [68]

      Zheng N, Hou J, Xu Y, Fang Z, Zou W, Zhao Q, Xie T. ACS Macro Lett, 2017, 6(4): 326-330  doi: 10.1021/acsmacrolett.7b00037

    69. [69]

      Chen S, Wang F, Peng Y, Chen T, Wu Q, Sun P. Macromol Rapid Commun, 2015, 36(18): 1687-1692  doi: 10.1002/marc.201500257

    70. [70]

      Capelot M, Montarnal D, Tournilhac F, Leibler L. J Am Chem Soc, 2012, 134(18): 7664-7667  doi: 10.1021/ja302894k

    71. [71]

      Liu Y L, Chuo T W. Polym Chem, 2013, 4(7): 2194-2205  doi: 10.1039/c2py20957h

    72. [72]

      Bose R K, Kötteritzsch J, Garcia S J, Hager M D, Schubert U S, van der Zwaag S. J Polym Sci, Part A: Polym Chem, 2014, 52(12): 1669-1675  doi: 10.1002/pola.v52.12

    73. [73]

      Du P, Liu X, Zheng Z, Wang X, Joncheray T, Zhang Y. RSC Adv, 2013, 3(35): 15475-15482  doi: 10.1039/c3ra42278j

    74. [74]

      Gandini A, Coelho D, Silvestre A J D. Eur Polym J, 2008, 44(12): 4029-4036  doi: 10.1016/j.eurpolymj.2008.09.026

    75. [75]

      Gandini A, Silvestre A J D, Coelho D. J Polym Sci, Part A: Polym Chem, 2010, 48(9): 2053-2056  doi: 10.1002/pola.v48:9

    76. [76]

      Adzima B J, Aguirre H A, Kloxin C J, Scott T F, Bowman C N. Macromolecules, 2008, 41(23): 9112-9117  doi: 10.1021/ma801863d

    77. [77]

      Scheltjens G, Diaz M M, Brancart J, van Assche G, van Mele B. React Funct Polym, 2013, 73(2): 413-420  doi: 10.1016/j.reactfunctpolym.2012.06.017

    78. [78]

      Wouters M, Craenmehr E, Tempelaars K, Fischer H, Stroeks N, van Zanten J. Prog Org Coat, 2009(2), 64: 156-162

    79. [79]

      Xu J, Yang D, Li W, Gao Y, Chen H, Li H. Polymer, 2011, 52(19): 4268-4276  doi: 10.1016/j.polymer.2011.07.015

    80. [80]

      Shibayama M, Hiroyuki Y, Hidenobu K, Hiroshi F, Shunji N. Polymer, 1988, 29(11): 2066-2071  doi: 10.1016/0032-3861(88)90182-6

    81. [81]

      Roberts M C, Hanson M C, Massey A P, Karren E A, Kiser P F. Adv Mater, 2007, 19(18): 2503-2507  doi: 10.1002/(ISSN)1521-4095

    82. [82]

      Deng G, Tang C, Li F, Jiang H, Chen Y. Macromolecules, 2010, 43(3): 1191-1194  doi: 10.1021/ma9022197

    83. [83]

      Deng G, Li F, Yu H, Liu F, Liu C, Sun W, Jiang H, Chen Y. ACS Macro Lett, 2012, 1(1): 275-279

    84. [84]

      Ferry I J D, Eldridge J E. J Phys Chem, 1949, 53(1): 184-196  doi: 10.1021/j150466a015

    85. [85]

      Eldridge J E, Ferry J D. J Phys Chem, 1954, 58(11): 992-995  doi: 10.1021/j150521a013

    86. [86]

      Angell C A. J Non-Cryst Solids, 1985, 73(1): 1-17

    87. [87]

      Roland C M, Ngai K L. Macromolecules, 1991, 24(19): 5315-5319  doi: 10.1021/ma00019a016

    88. [88]

      Mauro J C, Yue Y, Ellison A J, Gupta P K, Allan D C. Proc Natl Acad Sci USA, 2009, 106(47): 19780-19784  doi: 10.1073/pnas.0911705106

    89. [89]

      Huang D, McKenna G B. J Chem Phys, 2001, 114(13): 5621-5630  doi: 10.1063/1.1348029

    90. [90]

      Park H Y, Kloxin C J, Scott T F, Bowman C N. Macromolecules, 2010, 43(24): 10188-10190  doi: 10.1021/ma1020209

    91. [91]

      Denissen W, Winne J M, Du Prez F E. Chem Sci, 2016, 7(1): 30-38  doi: 10.1039/C5SC02223A

    92. [92]

      Denissen W, Rivero G, Nicolaÿ R, Leibler L, Winne J M, Du Prez F E. Adv Funct Mater, 2015, 25(16): 2451-2457  doi: 10.1002/adfm.201404553

    93. [93]

      Hendriks B, Waelkens J, Winne J M, Du Prez F E. ACS Macro Lett, 2017, 6(9): 930-934  doi: 10.1021/acsmacrolett.7b00494

    94. [94]

      Fortman D J, Brutman J P, Cramer C J, Hillmyer M A, Dichtel W R. J Am Chem Soc, 2015, 137(44): 14019-14022  doi: 10.1021/jacs.5b08084

    95. [95]

      Obadia M M, Mudraboyina B P, Serghei A, Montarnal D, Drockenmuller E. J Am Chem Soc, 2015, 137(18): 6078-6083  doi: 10.1021/jacs.5b02653

    96. [96]

      Martin R, Rekondo A, de Luzuriaga A R, Cabañero G, Grande H J, Odriozola I. J Mater Chem A, 2014, 2(16): 5710-5715  doi: 10.1039/c3ta14927g

    97. [97]

      de Luzuriaga A R, Martin R, Markaide N, Rekondo A, Cabañero G, Rodríguez J, Odriozola I. Mater Horiz. 2016, 3(3): 241-247  doi: 10.1039/C6MH00029K

    98. [98]

      Zheng P, McCarthy T J. J Am Chem Soc, 2012, 134(4): 2024-2027  doi: 10.1021/ja2113257

    99. [99]

      Liu W X, Zhang C, Zhang H, Zhao N, Yu Z X, Xu J. J Am Chem Soc, 2017, 139(25): 8678-8684  doi: 10.1021/jacs.7b03967

    100. [100]

      Ishida K, Yoshie N. Macromolecules, 2008, 41(13): 4753-4757  doi: 10.1021/ma8008383

    101. [101]

      Ishida K, Nishiyama Y, Michimura Y, Oya N, Yoshie N. Macromolecules, 2009, 43(2): 1011-1015

    102. [102]

      Ishida K, Weibel V, Yoshie N. Polymer, 2011, 52(13): 2877-2882  doi: 10.1016/j.polymer.2011.04.038

    103. [103]

      Kuang X, Liu G, Zheng L, Li C, Wang D. Polymer, 2015, 65: 202-209  doi: 10.1016/j.polymer.2015.03.074

    104. [104]

      Ward I M. Makromol Chem, Macromol Symp, 1988, 22(1): 59-82

    105. [105]

      Miličević D, Trifunović D S, Popović M, Milić T V, Suljovrujić E. Nucl Instrum Meth B, 2007, 260(2): 603-612

    106. [106]

      Alcock B, Cabrera N O, Barkoula N M, Loos J, Peijs T, Compos Part A Appl S, 2006, 37(5), 716-726  doi: 10.1016/j.compositesa.2005.07.002

    107. [107]

      Xiang H P, Rong M Z, Zhang M Q. ACS Sustain Chem Eng, 2016, 4(5): 2715-2724  doi: 10.1021/acssuschemeng.6b00224

    108. [108]

      Xiang Hongping(向洪平), Rong Minzhi(容敏智), Zhang Mingqiu(章明秋). Acta Polymerica Sinica(高分子学报), 2017, (7): 1130-1140

    109. [109]

      Küpfer J, Finkelmann H. Makromol Chem Rapid Commun, 1991, 12(12): 717-726  doi: 10.1002/marc.1991.030121211

    110. [110]

      Sánchez-Ferrer A. Liq Cryst Today, 2014, 23(2): 44-45  doi: 10.1080/1358314X.2014.898880

    111. [111]

      Pei Z, Yang Y, Chen Q, Terentjev E M, Wei Y, Ji Y. Nat Mater, 2014, 13(1): 36-41  doi: 10.1038/nmat3812

    112. [112]

      Pritchard R H, Redmann A L, Pei Z, Ji Y, Terentjev E M, Polymer, 2016, 95: 45-51  doi: 10.1016/j.polymer.2016.04.060

    113. [113]

      Kloxin C J, Scott T F, Park H Y, Bowman C N. Adv Mater, 2011, 23(17): 1977-1981  doi: 10.1002/adma.201100323

    114. [114]

      Lyon G B, Cox L M, Goodrich J T, Baranek A D, Ding Y, Bowman C N. Macromolecules, 2016, 49(23): 8905-8913  doi: 10.1021/acs.macromol.6b01281

    115. [115]

      Zhang G, Zhao Q, Yang L, Zou W, Xi X, Xie T. ACS Macro Lett, 2016, 5(7): 805-808  doi: 10.1021/acsmacrolett.6b00357

    116. [116]

      Zhang H, Han H, Xu X. Compos Sci Technol, 2018, 158: 61-66  doi: 10.1016/j.compscitech.2018.02.003

    117. [117]

      Ageorges C, Ye L, Hou M. Compos Part A ApplS, 2001, 32(6): 839-857  doi: 10.1016/S1359-835X(00)00166-4

    118. [118]

      Sun Yaguang(孙亚光), Yang Hua(杨华), Guo Yafang(郭雅芳). Mech Eng Appl(力学与工程应用), 2016, 16: 289-290

    119. [119]

      Yu K, Shi Q, Li H, Jabour J, Yang H, Dunn M L, Wang T, Qi H J. J Mech Phys Solids, 2016, 94: 1-7

    120. [120]

      Chabert E, Vial J, Cauchois J P, Mihaluta M, Tournilhac F. Soft Matter, 2016, 12(21): 4838-4845  doi: 10.1039/C6SM00257A

    121. [121]

      Shi Q, Yu K, Dunn M L, Wang T, Qi H J. Macromolecules, 2016, 49(15): 5527-5537  doi: 10.1021/acs.macromol.6b00858

    122. [122]

      Stukalin E B, Cai L H, Kumar N A, Leibler L, Rubinstein M. Macromolecules, 2013, 46(18): 7525-7541  doi: 10.1021/ma401111n

    123. [123]

      Yang Y, Pei Z, Zhang X, Tao L, Wei Y, Ji Y. Chem Sci, 2014, 5(9): 3486-3492  doi: 10.1039/C4SC00543K

    124. [124]

      Yang Y, Pei Z, Li Z, Wei Y, Ji Y. J Am Chem Soc, 2016, 138(7): 2118-2121  doi: 10.1021/jacs.5b12531

    125. [125]

      Pei Z, Yang Y, Chen Q, Wei Y, Ji Y. Adv Mater, 2016, 28: 156-160  doi: 10.1002/adma.201503789

    126. [126]

      Yan P, Zhao W, Fu X, Liu Z, Kong W, Zhou C, Lei J. RSC Adv, 2017, 7(43): 26858-26866  doi: 10.1039/C7RA01711A

    127. [127]

      Yan P, Zhao W, Wang Y, Jiang Y, Zhou C, Lei J. Macromol Chem Phys, 2017, 218(20): 1700265  doi: 10.1002/macp.v218.20

    128. [128]

      Legrand A, Soulié-Ziakovic C. Macromolecules, 2016, 49(16): 5893-902  doi: 10.1021/acs.macromol.6b00826

    129. [129]

      Huang Z, Wang Y, Zhu J, Yu J, Hu Z. Compos Sci Technol, 2018, 154: 18-27  doi: 10.1016/j.compscitech.2017.11.006

    130. [130]

      Tang Z, Liu Y, Guo B, Zhang L. Macromolecules, 2017, 50(19): 7584-7592  doi: 10.1021/acs.macromol.7b01261

    131. [131]

      Liu Y, Tang Z, Chen Y, Zhang C, Guo B. ACS Appl Mater Interface, 2017, 10(3): 2992-3001

    132. [132]

      Yu S, Zhang R, Wu Q, Chen T, Sun P. Adv Mater, 2013, 25(35): 4912-4917  doi: 10.1002/adma.201301513

    133. [133]

      Fan M, Liu J, Li X, Zhang J, Cheng J. Ind Eng Chem Res, 2014, 53(42): 16156-16163  doi: 10.1021/ie5028183

    134. [134]

      Kuang X, Liu G, Dong X, Liu X, Xu J, Wang D. J Polym Sci, Part A: Polym Chem, 2015, 53(18): 2094-2103  doi: 10.1002/pola.v53.18

    135. [135]

      Imbernon L, Norvez S. Eur Polym J, 2016, 82: 347-376  doi: 10.1016/j.eurpolymj.2016.03.016

    136. [136]

      Sutanto P, Picchioni F, Janssen L P B M, Dijkhuis K A J, Dierkes W K, Noordermeer J W M. J Appl Polym Sci, 2006, 102(6): 5948-5957  doi: 10.1002/(ISSN)1097-4628

    137. [137]

      Polgar L M, van Duin M, Broekhuis A A, Picchioni F. Macromolecules, 2015, 48(19): 7096-7105  doi: 10.1021/acs.macromol.5b01422

    138. [138]

      Bai J, Li H, Shi Z, Yin J. Macromolecules, 2015, 48(11): 3539-3546  doi: 10.1021/acs.macromol.5b00389

    139. [139]

      Bai J, Li H, Shi Z, Altstädt V, Kirschnick T, Ott H, Stadler R, Mehler C. RSC Adv, 2015, 5(56): 45376-45383  doi: 10.1039/C5RA08719H

    140. [140]

      Zhang J, Niu Y, Huang C, Xiao L, Chen Z, Yang K, Wang Y. Polym Chem, 2012, 3(6): 1390-1393  doi: 10.1039/c2py20028g

    141. [141]

      Trovatti E, Lacerda T M, Carvalho A J F, Gandini A. Adv Mater, 2015, 7(13): 2242-2245

    142. [142]

      Yu K, Taynton P, Zhang W, Dunn M L, Qi H J. RSC Adv, 2014, 4(20): 10108-10117  doi: 10.1039/C3RA47438K

    143. [143]

      Yu K, Taynton P, Zhang W, Dunn M L, Qi H J. RSC Adv, 2014, 4(89): 48682-48690  doi: 10.1039/C4RA06543C

    144. [144]

      Li Y, Rios O, Keum J K, Chen J, Kessler M R. ACS Appl Mater Interface, 2016, 8(24): 15750-15757  doi: 10.1021/acsami.6b04374

    145. [145]

      Kawasaki K, Ube T, Ikeda T. Mol Cryst Liq Cryst, 2015, 614(1): 62-66  doi: 10.1080/15421406.2015.1049910

    146. [146]

      Zhou Y, Goossens J G, Sijbesma R P, Heuts J P. Macromolecules, 2017, 50(17): 6742-6751  doi: 10.1021/acs.macromol.7b01142

    147. [147]

      Denissen W, Droesbeke M, Nicolaÿ R, Leibler L, Winne J M, Du Prez F E. Nat Commun, 2017, 8: 14857  doi: 10.1038/ncomms14857

    148. [148]

      Stukenbroeker T, Wang W, Winne J M, Du Prez F E, Nicolaÿ R, Leibler L. Polym Chem, 2017, 8(43): 6590-6593  doi: 10.1039/C7PY01488K

    149. [149]

      Zhang Y, Ying H, Hart K R, Wu Y, Hsu A J, Coppola A M, Cheng J. Adv Mater, 2016, 28(35): 7646-7651  doi: 10.1002/adma.201601242

    150. [150]

      Osthoff R C, Bueche A M, Grubb W T. J Am Chem Soc, 1954, 76(18): 4659-4663  doi: 10.1021/ja01647a052

    151. [151]

      Xiang H P, Qian H J, Lu Z Y, Rong M Z, Zhang M Q. Green Chem, 2015, 17(8): 4315-4325  doi: 10.1039/C5GC00754B

    152. [152]

      Imbernon L, Oikonomou E K, Norvez S, Leibler, L. Polym Chem, 2015, 6(23): 4271-4278  doi: 10.1039/C5PY00459D

    153. [153]

      Wei C, Chen M, Liu D, Zhou W, Khan M, Wu X, Huang N, Li L. Polym Chem, 2015, 6(22): 4067-4070  doi: 10.1039/C5PY00366K

    154. [154]

      Takahashi A, Goseki R, Ito K, Otsuka H. ACS Macro Lett, 2017, 6(11): 1280-1284  doi: 10.1021/acsmacrolett.7b00762

    155. [155]

      Li H, Bai J, Shi Z, Yin J. Polymer, 2016, 85: 106-113  doi: 10.1016/j.polymer.2016.01.050

    156. [156]

      Xia N N, Xiong X M, Wang J, Rong M Z, Zhang M Q. Chem Sci, 2016, 7(4): 2736-2742  doi: 10.1039/C5SC03483C

    157. [157]

      Xia N N, Rong M Z, Zhang M Q. J Mater Chem A, 2016, 4(37): 14122-14131  doi: 10.1039/C6TA05121A

    158. [158]

      Demongeot A, Groote R, Goossens H, Hoeks T, Tournilhac F, Leibler L. Macromolecules, 2017, 50(16): 6117-6127  doi: 10.1021/acs.macromol.7b01141

    159. [159]

      Röttger M, Domenech T, van der Weegen R, Breuillac A, Nicolaÿ R, Leibler L. Science, 2017, 356(6333): 62-65  doi: 10.1126/science.aah5281

    160. [160]

    161. [161]

      Yang K, Grant J C, Lamey P, Joshi-Imre A, Lund B R, Smaldone R A, Voit W. Adv Funct Mater, 2017, 27(24): 1700318/1-11

    162. [162]

      Davidson J R, Appuhamillage G A, Thompson C M, Voit W, Smaldone R A. ACS Appl Mater Interfaces 2016, 8, 16961-16966

    163. [163]

      Shi Q, Yu K, Kuang X, Mu X, Dunn C K, Dunn M L, Wang T, Qi H J. Mater Horiz, 2017, 4, 598-607  doi: 10.1039/C7MH00043J

    164. [164]

      Adzima B J, Kloxin C J, DeForest C A, Anseth K S, Bowman C N. Macromol Rapid Commun, 2012, 33(24): 2092-2096  doi: 10.1002/marc.v33.24

    165. [165]

      Hashimoto T, Meiji H, Urushisaki M, Sakaguchi T, Kawabe K, Tsuchida C, Kondo K. J Polym Sci, Part A: Polym Chem, 2012, 50(17): 3674-3681  doi: 10.1002/pola.v50.17

    166. [166]

      Yamaguchi A, Hashimoto T, Kakichi Y, Urushisaki M, Sakaguchi T, Kawabe K, Kondo K, Iyo H. J Polym Sci, Part A: Polym Chem, 2015, 53(8): 1052-1059  doi: 10.1002/pola.v53.8

    167. [167]

      Yu K, Shi Q, Dunn M L, Wang T, Qi H J. Adv Funct Mater, 2016, 26(33): 6098-6106  doi: 10.1002/adfm.v26.33

    168. [168]

      Tadmor Z, Gogos C G. Principles of Polymer Processing. Hoboken: John Wiley & Sons, 2013

    169. [169]

      Zhang M Q. Express Polym Lett, 2016, 10(8): 627-627  doi: 10.3144/expresspolymlett.2016.57

  • 加载中
    1. [1]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    2. [2]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    3. [3]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    4. [4]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    5. [5]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    8. [8]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    9. [9]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    10. [10]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    11. [11]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    14. [14]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    15. [15]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    16. [16]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    17. [17]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    18. [18]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    19. [19]

      Jianfu Zhang Wei Bai Juan Hou Chenyang Zou . Reform and Practice of “Project-Patent- Scholarly Paper” Integrated Teaching Mode: Taking “Polymer Processing” Course as an Example. University Chemistry, 2025, 40(4): 138-146. doi: 10.12461/PKU.DXHX202408138

    20. [20]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

Metrics
  • PDF Downloads(0)
  • Abstract views(117)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return