Citation: Yan Liu, Yang Gao, Xin Zhao, Chao Shan, Xiao-lin Zhang, Bing-cai Pan. A Gel Resin-supported Nano-hydrated Iron Oxide for Arsenate Sorption from Water[J]. Acta Polymerica Sinica, ;2018, 0(7): 939-948. doi: 10.11777/j.issn1000-3304.2018.18056 shu

A Gel Resin-supported Nano-hydrated Iron Oxide for Arsenate Sorption from Water

  • Corresponding author: Xiao-lin Zhang, xlzhang@nju.edu.cn
  • Received Date: 10 February 2018
    Revised Date: 26 March 2018
    Available Online: 7 May 2018

  • Nano-scale hydrated ferric oxide (HFO) of high specific surface area and reactivity exhibits specific affinity toward arsenate owing to the abundant surface hydroxyl groups. Nevertheless, the ultrafine particle of nano-HFO tend to agglomerate and thereafter significantly limits its large-scale application in water treatment due to the excessive hydraulic pressure drop and difficult operation from the reaction systems. In comparison with macroporous ion exchangers, gel-type ones are more cost effective, though their utilization as hosts to support nanoparticles is intensively compromised by relatively poor pore structure, high swelling rate and weak mechanical strength. In this study we prepared a nanocomposite adsorbent HFO-201 × 4 via ion exchange/in situ deposition method by using a gel resin-201 × 4 as the host of nano-HFO. The main objective of this study is to compare the structural features, physical and chemical properties of the nanocomposite to a macroporous resin-based nanocomposite HFO-201, and to evaluate their different adsorption property toward As(V). The results indicate that nano-HFO immobilized in HFO-201 × 4 was acicular, quite different from the spherical particles in HFO-201. Other structure properties of both composites, such as crystal form, pore structure, mechanical strength and swelling ratio, are quite similar. The maximum adsorption capacity of HFO-201 × 4 was slightly higher than that of HFO-201, while HFO-201 × 4 exhibited superior adsorption toward trace As(V) over HFO-201 in terms of adsorption capacity and kinetics, possibly arising from higher site density of HFO-201 × 4 (1.47 mmol/g) than HFO-201 (0.88 mmol/g). From the breakthrough curves of two separate fixed beds packed with both composites, the effective working capacity of HFO-201 × 4 was nearly twice of HFO-201. The exhausted HFO-201 × 4 could be efficiently regenerated for cyclic runs. This study demonstrates that gel-type anion exchange resins could serve as promising hosts for fabrication of similar nanocomposite for water decontamination.
  • 加载中
    1. [1]

      Chai L, Yue M, Li Q, Zhang G, Zhang M, Wang Q, Liu H, Liu Q. Hydrometallurgy, 2018, 175: 93-101

    2. [2]

      Chutia P, Kato S, Kojima T, Satokawa S. J Hazard Mater, 2009, 162(1): 440-447

    3. [3]

      Bang S, Patel M, Lippincott L, Meng X. Chemosphere, 2005, 60(3): 389-397

    4. [4]

      Banerjee K, Amy G L, Prevost M, Nour S, Jekel M, Gallagher P M, Blumenschein C D. Water Res, 2008, 42(13): 3371-3378

    5. [5]

      Kundu S, Gupta A. Sep Purif Technol, 2006, 51(2): 165-172

    6. [6]

      Mohapatra D, Mishra D, Chaudhury G R, Das R P. Korean J Chem Eng, 2007, 24(3): 426-430

    7. [7]

      Zongliang H, Senlin T, Ping N. J Rare Earth, 2012, 30(6): 563-572

    8. [8]

      Fendorf S, Kocar B D. Adv Agronomy, 2009, 104, 137-164

    9. [9]

      Gupta A, Yunus M, Sankararamakrishnan N. Chemosphere, 2012, 86(2): 150-155

    10. [10]

      Ding M, De Jong B, Roosendaal S, Vredenberg A. Geochimica et Cosmochimica Acta, 2000, 64(7): 1209-1219

    11. [11]

      Murad E. Neues Jahrbuch für Mineralogie-Monatshefte, 1982, 2: 45-56

    12. [12]

      Murphy P J, Posner A M, Quirk J P. Journal of Colloid and Interface Science, 1976, 56(2): 298-311

    13. [13]

      Zhao J, Huggins F E, Feng Z, Lu F, Shah N, Huffman G P. Journal of Catalysis, 1993, 143(2): 499-509

    14. [14]

      Mohmood I, Lopes C B, Lopes I, Ahmad I, Duarte A C, Pereira E. Environ Sci Pollut Res, 2013, 20(3): 1239-1260

    15. [15]

      Chen W, Parette R, Zou J, Cannon F S, Dempsey B A. Water Res, 2007, 41(9): 1851-1858

    16. [16]

      Yang J, Zhang H, Yu M, Emmanuelawati I, Zou J, Yuan Z, Yu C. Adv Funct Mate, 2014, 24(10): 1354-1363

    17. [17]

      Gang D D, Deng B, Lin L. J. Hazard. Material. 2010, 182(1): 156-161

    18. [18]

      Lofrano G, Carotenuto M, Libralato G, Domingos R F, Markus A, Dini L, Gautam R K, Baldantoni D, Rossi M, Sharma S K. Water Res, 2016.92(11): 22-37

    19. [19]

      Smith R C, Li J, Padungthon S, Sengupta A K. Frontiers of Environmental Science & Engineering, 2015, 9(5): 929-938

    20. [20]

      Zhang Q, Pan B, Chen X, Zhang W, Pan B, Zhang Q, Lv L, Zhao X. Sci China Series B Chem, 2008, 51(4): 379-385.

    21. [21]

    22. [22]

    23. [23]

      Pan B, Wu J, Pan B, Lv L, Zhang W, Xiao L, Wang X, Tao X, Zheng S. Water Res, 2009, 43(17): 4421-4429

    24. [24]

      Jiang Z, Lv L, Zhang W, Du Q, Pan B, Yang L, Zhang Q. Water Res, 2011, 45(6): 2191-2198

    25. [25]

      Pan B, Xu J, Wu B, Li Z, Liu X. Environ Sci Technol, 2013, 47(16): 9347-9354

    26. [26]

      Zhang X, Cheng C, Qian J, Lu Z, Pan S, Pan B. Environmental Science Technology, 2017, 51: 9210-9218

    27. [27]

      Pan S, Zhang X, Qian J, Lu Z, Hua M, Cheng C, Pan B. Nanoscale, 2017, 9: 19154-19161

    28. [28]

      Dean J A. Langes Chemistry Handbook. Beijing: Science Press, 1991. 5-14

    29. [29]

      Chai L, Yang J, Zhang N, Wu P, Li Q, Wang Q, Liu H, Yi H. Chemosphere, 2017, 182: 595-604

    30. [30]

      Su C, Pals R. Environmental Science Technology, 2001, 35(22): 4562-4568

    31. [31]

      Foo K, Hameed B. Chemical Engineering Journal, 2010, 156(1): 2-10

  • 加载中
    1. [1]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    2. [2]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    5. [5]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    16. [16]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    17. [17]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    20. [20]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

Metrics
  • PDF Downloads(0)
  • Abstract views(102)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return