Citation: Ya-zhi Liu, Liang Ding, Jiao Liu, Zheng-jin Yang, Tong-wen Xu. Polyphenylene Oxide Based Ion Exchange Membranes for Fuel Cells[J]. Acta Polymerica Sinica, ;2018, 0(7): 797-813. doi: 10.11777/j.issn1000-3304.2018.18055 shu

Polyphenylene Oxide Based Ion Exchange Membranes for Fuel Cells

  • Due to the unique ion transfer characteristics of ion exchange membranes (IEMs), they can be used in the separation and classification of ionic systems. Hence, IEMs have a wide application prospect in clean production, energy conservation, emission reduction and energy conversion. Because of gradually depleted fossil fuel, the ever-increasing power demand of our modern lifestyle and the awareness of environment protection, the conversion and storage of energy from renewable sources (hydrogen, wind and solar energy, for instances) have attracted worldwide attention. For both fuel cells and aqueous organic redox flow batteries operated in neutral pH, ion exchange membranes are crucial in determining the internal resistance (conversion efficiency), working life span of the former and the coulombic efficiency, cycle life of the latter. IEMs have great potential in diverse applications and play prominent roles in addressing energy and environment related issues. Over the past decade, the development of IEMs has attracted much research attention in terms of materials, preparation and applications, due to their academic and industrial values. In this review, we summarized the advanced research on polyphenylene oxide (PPO) polymer based ion exchange membranes. We introduced the membranes synthetic methods, polymer structures, key performances and application processes separately. Besides, we also discussed about the problems of the PPO based ion exchange membranes that should be solved and prospected the development direction in the future. As to the PPO based ion exchange membranes synthetic methods, we divided them into two parts, anion exchange membranes and cation exchange membranes, with a variety of methods enumerated, including introduction of side chains, polymers crosslinking, optimization of functional groups and doping to improve the performances, such as ion conductivity, swelling ratio, mechanical strength and other important performances of the PPO based exchange membranes. We also realized the diversification of the function of ion exchange membranes and application in fuel cells, etc.
  • 加载中
    1. [1]

      Hay A S. J Polym Sci, Part A: Polym Chem, 1962, 58(166): 581-591

    2. [2]

      Xu T, Liu Z, Yang W. J Membr Sci, 2005, 249(1-2): 183-191

    3. [3]

      Zhang L, Xu T, Lin Z. J Membr Sci, 2006, 281(1-2): 491-499

    4. [4]

      Xu T, Liu Z, Li Y, Yang W. J Membr Sci, 2008, 320(1-2): 232-239

    5. [5]

      Wu L, Xu T, Yang W. J Membr Sci, 2006, 286(1-2): 185-192

    6. [6]

      Wu L, Xu T, Wu D, Zheng X. J Membr Sci, 2008, 310(1-2): 577-585

    7. [7]

      Wu L, Xu T. J Membr Sci, 2008, 322(2): 286-292

    8. [8]

      Ge Q, Ning Y, Wu L, Ge L, Liu X, Yang Z, Xu T. J Membr Sci, 2016, 518: 263-272

    9. [9]

      Ge Q, Ran J, Miao J, Yang Z, Xu T. ACS Appl Mater Interfaces, 2015, 7(51): 28545-28553

    10. [10]

      He Y, Pan J, Wu L, Zhu Y, Ge X, Ran J, Yang Z, Xu T. Sci Rep, 2015, 5: 13417

    11. [11]

      He Y, Si J, Wu L, Chen S, Zhu Y, Pan J, Ge X, Yang Z, Xu T. J Membr Sci, 2016, 515: 189-195

    12. [12]

      He Y, Wu L, Pan J, Zhu Y, Ge X, Yang Z, Ran J, Xu T. J Membr Sci, 2016, 504: 47-54

    13. [13]

      Hou J, Wang X, Liu Y, Ge Q, Yang Z, Wu L, Xu T. J Membr Sci, 2016, 518: 282-288

    14. [14]

      Lin X, Liang X, Poynton S D, Varcoe J R, Ong A L, Ran J, Li Y, Li C, Xu T. J Membr Sci, 2013, 443: 193-200

    15. [15]

      Ran J, Wang N, You X, Wu C, Li Q, Gong M, Xu T. J Hazard Mater, 2012, 241-242: 63-72

    16. [16]

      Ran J, Wu L, Ge Q, Chen Y, Xu T. J Membr Sci, 2014, 470: 229-236

    17. [17]

      Ran J, Wu L, He Y, Yang Z, Wang Y, Jiang C, Ge L, Erigene B, Xu T. J Membr Sci, 2017, 522: 267-291

    18. [18]

      Ran J, Wu L, Varcoe J R, Ong A L, Poynton S D, Xu T. J Membr Sci, 2012, 415-416: 242-249

    19. [19]

      Ran J, Wu L, Wei B, Chen Y, Xu T. Sci Rep, 2014, 4: 6486

    20. [20]

      Yang Z, Zhou J, Wang S, Hou J, Wu L, Xu T. J Mater Chem A, 2015, 3(29): 15015-15019

    21. [21]

      Yang Z, Liu Y, Guo R, Hou J, Wu L, Xu T. Chem Commun (Camb), 2016, 52(13): 2788-2791

    22. [22]

      Lin X, Varcoe J R, Poynton S D, Liang X, Ong A L, Ran J, Li Y, Xu T. J Mater Chem A, 2013, 1(24): 7262-7269

    23. [23]

      Li N, Leng Y, Hickner M A, Wang C Y. J Am Chem Soc, 2013, 135(27): 10124-10133

    24. [24]

      Li N, Yan T, Li Z, Thurn-Albrecht T, Binder W H. Energy Environ.Sci, 2012, 5(7): 7888-7892

    25. [25]

      Li N, Wang L, Hickner M. Chem Commun (Camb), 2014, 50(31): 4092-4095

    26. [26]

      Lai A N, Wang L S, Lin C X, Zhuo Y Z, Zhang Q G, Zhu A M, Liu Q L. ACS Appl Mater Interfaces, 2015, 7(15): 8284-8292

    27. [27]

      Park D-Y, Kohl P A, Beckham H W. J. Phys Chem C, 2013, 117(30): 15468-15477

    28. [28]

      Ye Y, Sharick S, Davis E M, Winey K I, Elabd Y A. ACS Macro Lett, 2013, 2(7): 575-580

    29. [29]

      Li Q, Liu L, Miao Q, Jin B, Bai R. Polym Chem, 2014, 5(7): 2208-2213

    30. [30]

      Disabb-Miller M L, Zha Y, DeCarlo A J, Pawar M, Tew G N, Hickner M A. Macromolecules, 2013, 46(23): 9279-9287

    31. [31]

      Gu S, Cai R, Yan Y. Chem Commun (Camb), 2011, 47(10): 2856-2858

    32. [32]

      Katzfuß A, Gogel V, Jörissen L, Kerres J. J Membr Sci, 2013, 425-426: 131-140

    33. [33]

      Li Y, Xu T. Sep Purif Technol, 2008, 61(3): 430-435

    34. [34]

      Lin X, Wu L, Liu Y, Ong A L, Poynton S D, Varcoe J R, Xu T. J Power Sources, 2012, 217: 373-380

    35. [35]

      Matsuoka K, Chiba S, Iriyama Y, Abe T, Matsuoka M, Kikuchi K, Ogumi Z. Thin Solid Films, 2008, 516(10): 3309-3313

    36. [36]

      Maurya S, Shin S-H, Kim M-K, Yun S-H, Moon S-H. J Membr Sci, 2013, 443: 28-35

    37. [37]

      Pandey A K, Goswami A, Sen D, Mazumder S, Childs R F. J Membr Sci, 2003, 217(1-2): 117-130

    38. [38]

      Stokes K K, Orlicki J A, Beyer F L. Polym Chem, 2011, 2(1): 80-82

    39. [39]

      Wang X, Li M, Golding B T, Sadeghi M, Cao Y, Yu E H, Scott K. Int J Hydrogen Energy, 2011, 36(16): 10022-10026

    40. [40]

      Wang Y, Rapakousiou A, Astruc D. Macromolecules, 2014, 47(12): 3767-3774

    41. [41]

      Yan X, Gu S, He G, Wu X, Zheng W, Ruan X. J Membr Sci, 2014, 466: 220-228

    42. [42]

      Zha Y, Disabb-Miller M L, Johnson Z D, Hickner M A, Tew G N. J Am Chem Soc, 2012, 134(10): 4493-4496

    43. [43]

      Mohanty A D, Bae C. J Mater Chem A, 2014, 2(41): 17314-17320

    44. [44]

      Nuñez S A, Capparelli C, Hickner M A. Chem. Mater, 2016, 28(8): 2589-2598

    45. [45]

      Marino M G, Kreuer K D. ChemSusChem, 2015, 8(3): 513-523

    46. [46]

      Meek K M, Nykaza J R, Elabd Y A. Macromolecules, 2016, 49(9): 3382-3394

    47. [47]

      Xu W, Zhao Y, Yuan Z, Li X, Zhang H, Vankelecom I F J. Adv Funct Mater, 2015, 25(17): 2583-2589

    48. [48]

      Meek K M, Elabd Y A. Macromolecules, 2015, 48(19): 7071-7084

    49. [49]

      Pan J, Lu S, Li Y, Huang A, Zhuang L, Lu J. Adv Funct Mater, 2010, 20(2): 312-319

    50. [50]

      Zhang X, Chen P, Shi Q, Li S, Gong F, Chen X, An Z. Int J Hydrogen Energy, 2017, 42(42): 26320-26332

    51. [51]

      Wu L, Zhang Z, Ran J, Zhou D, Li C, Xu T. Phys Chem Chem Phys, 2013, 15(14): 4870-4887

    52. [52]

      Ran J, Wu L, Xu T. Polym Chem, 2013, 4(17): 4612

    53. [53]

      Merle G, Wessling M, Nijmeijer K. J Membr Sci, 2011, 377(1-2): 1-35

    54. [54]

      Bae B, Miyatake K, Watanabe M. ACS Appl Mater Interfaces, 2009, 1(6): 1279-1286

    55. [55]

      Lin B, Chu F, Ren Y, Jia B, Yuan N, Shang H, Feng T, Zhu Y, Ding J. J Power Sources, 2014, 266: 186-192

    56. [56]

      Zhang F, Zhang H, Qu C. J Mater Chem, 2011, 21(34): 12744

    57. [57]

      Hou J, Liu Y, Ge Q, Yang Z, Wu L, Xu T. J Power Sources, 2018, 375: 404-411

    58. [58]

      Lee K H, Cho D H, Kim Y M, Moon S J, Seong J G, Shin D W, Sohn J-Y, Kim J F, Lee Y M. Energy Environ Sci, 2017, 10(1): 275-285

    59. [59]

      Mondal A N, He Y, Wu L, Khan M I, Emmanuel K, Hossain M M, Ge L, Xu T. J Mater Chem A, 2017, 5(3): 1022-1027

    60. [60]

      Liu Y, Pan Q, Wang Y, Zheng C, Wu L, Xu T. Sep Purif Technol, 2015, 156: 226-233

    61. [61]

      Yang Z, Zhou J, Wang S, Hou J, Wu L, Xu T. J Mater Chem A, 2015, 3(29): 15015-15019

    62. [62]

      Mondal A N, He Y, Ge L, Wu L, Emmanuel K, Hossain M M, Xu T. RSC Adv, 2017, 7(47): 29794-29805

    63. [63]

      Irfan M, Bakangura E, Afsar N U, Hossain M M, Ran J, Xu T. J Power Sources, 2017, 355: 171-180

    64. [64]

      Huang R, Kim J. J Appl Polym Sci, 1984, 29(12): 4017-4027

    65. [65]

      Ward W, Salemme R. Sulfonated Polyxylene Oxide as a Permselective Membrane for Gas Separations. ed.: USA, Google patents US3780496A. 1973-12-25.

    66. [66]

      Fu H, Jia L, Xu J. J Appl Polym Sci, 1994, 51(8): 1399-1404

    67. [67]

      Mahajan S S, Sarwade B D, Wadgaonkar P P. Polym Bull, 1988, 20(2): 153-160

    68. [68]

      Wu D, Fu R, Xu T, Wu L, Yang W. J Membr Sci, 2008, 310(1-2): 522-530

    69. [69]

      Li C, Liu J, Guan R, Zhang P, Zhang Q. J Membr Sci, 2007, 287(2): 180-186

    70. [70]

      Lu W, Lu D, Liu J, Li C, Guan R. Polym Adv Technol, 2007, 18(3): 200-206

    71. [71]

      Xu T, Woo J-J, Seo S-J, Moon S-H. J Membr Sci, 2008, 325(1): 209-216

    72. [72]

      Wu D, Wu L, Woo J-J, Yun S-H, Seo S-J, Xu T, Moon S-H. J Membr Sci, 2010, 348(1-2): 167-173

    73. [73]

      Jung B, Kim B, Yang J M. J Membr Sci, 2004, 245(1-2): 61-69

    74. [74]

      Yun S-H, Woo J-J, Seo S-J, Wu L, Wu D, Xu T, Moon S-H. J Membr Sci, 2011, 367(1-2): 296-305

    75. [75]

      Bakangura E, Ge L, Muhammad M, Pan J, Wu L, Xu T. J Membr Sci, 2015, 475: 30-38

    76. [76]

      Zhang S, Wu C, Xu T, Gong M, Xu X. J Solid State Chem, 2005, 178(7): 2292-2300

    77. [77]

      Zhang S, Xu T, Wu C. J Membr Sci, 2006, 269(1-2): 142-151

    78. [78]

      Wu Y, Wu C, Varcoe J R, Poynton S D, Xu T, Fu Y. J Power Sources, 2010, 195(10): 3069-3076

    79. [79]

      Tongwen X. J Membr Sci, 2003, 215(1-2): 25-32

    80. [80]

      Luo J, Wu C, Wu Y, Xu T. Sep Purif Technol, 2011, 78(1): 97-102

    81. [81]

      Sun F, Wu C, Wu Y, Xu T. J Membr Sci, 2014, 450: 103-110

    82. [82]

      Li Y, He G, Wang S, Yu S, Pan F, Wu H, Jiang Z. J Mater Chem A, 2013, 1(35): 10058

    83. [83]

      Wu B, Ge L, Yu D, Hou L, Li Q, Yang Z, Xu T. J Mater Chem A, 2016, 4(38): 14545-14549

    84. [84]

      Ran J, Hu M, Yu D, He Y, Shehzad M A, Wu L, Xu T. J Membr Sci, 2016, 520: 630-638

    85. [85]

      Wang N, Wu C, Wu Y, Xu T. J Membr Sci, 2010, 363(1-2): 128-139

    86. [86]

      Xiao X, Wu C, Cui P, Luo J, Wu Y, Xu T. J Membr Sci, 2011, 379(1-2): 112-120

  • 加载中
    1. [1]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    5. [5]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    6. [6]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    9. [9]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    10. [10]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    11. [11]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    12. [12]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    15. [15]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    16. [16]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    20. [20]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

Metrics
  • PDF Downloads(0)
  • Abstract views(149)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return