Citation: Jian-jun Shi, Lei Kong, Xiao-biao Zuo, Deng-yao Liu, Jiao Yan, Zhi-hai Feng. Preparation of PR/SiO2 Hybrid Phenolic Aerogel with Bi-component Gel Networks[J]. Acta Polymerica Sinica, ;2018, 0(10): 1307-1314. doi: 10.11777/j.issn1000-3304.2018.18054 shu

Preparation of PR/SiO2 Hybrid Phenolic Aerogel with Bi-component Gel Networks

  • Hybrid phenolic resin/silica (PR/SiO2) hybrid aerogels with bicomponent and interpenetrating gel networks were prepared through co-gelating reaction by controlling Sol-Gel reaction and tuning gel time of hybrid solution. In this study, variations of the hybrid aerogels properties, including apparent density, linear shrinkage, pore texture, micromorphology, thermal stability and mechanical performance, with their silica aerogel contents were investigated. The results showed that apparent density of PR/SiO2 hybrid aerogels increased proportionally with increasing content of the silica aerogels. Compared to the pure organic phenolic (PR) aerogels, pore texture for PR/SiO2 hybrid aerogels were remarkably affected by the content of silica aerogels introduced by co-gelating reactions of phenolic resin and tetraethoxysilane (TEOS) monomers. Specific surface area of PR/SiO2 hybrid aerogels was improved and the average pore diameter decreased after incorporation of silica aerogels. As studied in the research, when the concentration of TEOS monomers increased to 1.50 mol/L, the average pore diameter of PR/SiO2 hybrid aerogel extremely decreased to 0.25 μm and the specific surface area increased from 24.6 m2/g for pure PR aerogel to 44 m2/g. Micromorphology detected by scanning electron microscopy (SEM) displayed that larger pores of hybrid aerogels were gradually filled by silica sol particles with increasing content of silica aerogels, which brought forth much more small openings and wider distribution for the pore diameter. Additionally, the skeleton’s strength and thermal stability of PR/SiO2 hybrid aerogels were efficiently enhanced after the incorporation of silica aerogels. As the concentration of TEOS monomers was 1 mol/L, the temperature corresponding to the maximum pyrolysis rate (Tmax) was improved from 539 °C to 602 °C, and the thermal decomposition zone of phenolic resin was evidently widened, which suggested that incorporation of silica aerogels effectively inhibited the pyrolysis of phenolic resins. The big promotion of thermal stability for PR/SiO2 hybrid aerogels was attributed to the thermal barrier and nano-dispersion of SiO2 sol particles in organic skeletons.
  • 加载中
    1. [1]

      Fricke J, Emmerling A. J Sol-Gel Sci Technol, 1998, 13(1-3): 299 − 303

    2. [2]

      Aegerter M A, Nicholas L, Matthias M M. Aerogels Handbook. New York: Springer-Verlag New York, 2011. 932

    3. [3]

      Fathy N A, Attia A A, Hegazi B. Desalin Water Treat, 2016, 57(21): 9957 − 9970

    4. [4]

      Niimi R, Kadono T, Tsuchiyama A, Okudaira K, Hasegawa S, Tabata M, Watanabe T, Yagishita M, Machii N, Nakamura A M, Uesugi K, Takeuchi A, Nakano T. Astrophys J, 2012, 744(1): 18 − 22

    5. [5]

      Baetens R, Jelle B P, Gustavsen A. Energ Buildings, 2011, 43(4): 761 − 769

    6. [6]

      Ren H, Wu D, Li J, Wu W. Mater Des, 2018, 140: 376 − 386

    7. [7]

      Wang J, Kuhn J, Lu X. J Non-Cryst Solids, 1995, 186: 296 − 300

    8. [8]

      Shimizu T, Kanamori K, Nakanishi K. Chem Eur J, 2017, 23(22): 1 − 13

    9. [9]

      Boday D J, Loy D A. J Non-Cryst Solids, 2015, 427: 114 − 119

    10. [10]

      Ghafoorian N S, Bahramian A R, Seraji M M. Mater Design, 2015, 86: 279 − 288

    11. [11]

      Qian H, Kucernak A R, Greenhalgh E S, Bismarck A, Shaffer M S P. ACS Appl Mater Interfaces, 2013, 5(13): 6113 − 6122

    12. [12]

      Bessire B K, Lahankar S A, Minton T K. ACS Appl Mater Interfaces, 2015, 7(3): 1383 − 1395

    13. [13]

      Bahramian A. Iran Polym J, 2013, 22(8): 579 − 589

    14. [14]

      He S, Bi Y, Zhang Y, Cao H, Shi X, Luo X, Zhang L. J Sol-Gel Sci Technol, 2015, 74(1): 175 − 180

    15. [15]

      Mazraeh-Shahi Z T, Shoushtari A M, Bahramian A R. Procedia Mater Sci, 2015, 11: 571 − 575

    16. [16]

      Kong Y, Zhong Y, Shen X, Cui S, Yang M, Teng K, Zhang J. J Non-Cryst Solids, 2012, 358(23): 3150 − 3155

    17. [17]

      Seraji M M, Ghafoorian N S, Bahramian A R, Alahbakhsh A. J Non-Cryst Solids, 2015, 425: 146 − 152

    18. [18]

      Yin R, Cheng H, Hong C, Zhang X. Compos Part A: Appl S, 2017, 101: 500 − 510

    19. [19]

      Kong Y, Shen X, Cui S, Fan M. Ceram Int, 2014, 40(6): 8265 − 8271

    20. [20]

      Wu X, Li W, Shao G, Shen X, Cui S, Zhou J, Wei Y, Chen X. Ceram Int, 2017, 43(5): 4188 − 4196

    21. [21]

      Gao X, Lv H, Li Z, Xu Q, Liu H, Wang Y, Xia Y. RSC Adv, 2016, 6(109): 107278 − 107285

    22. [22]

      Shi Jianjun

    23. [23]

      Ge Tiejun

    24. [24]

      Carotenuto G, Nicolais L. J Appl Polym Sci, 1999, 74(11): 2703 − 2715

    25. [25]

      He G, Riedl B, Aït-Kadi A. J Appl Polym Sci, 2003, 87(3): 433 − 440

    26. [26]

      Kamiya K, Yoko T, Suzuki H. J Non-Cryst Solids, 1987, 93(2): 407 − 414

    27. [27]

      Colby M W, Osaka A, Mackenzie J D. J Non-Cryst Solids, 1988, 99(1): 129 − 139

    28. [28]

      Colby M W, Osaka A, Mackenzie J D. J Non-Cryst Solids, 1986, 82(1): 37 − 41

    29. [29]

      Hench L L, West J K. Chem Rev, 1990, 90(1): 33 − 72

    30. [30]

      Rao A V, Kulkarni M M, Amalnerkar D P, Seth T. Appl Surf Sci, 2003, 206(1): 262 − 270

    31. [31]

      Rao A P, Rao A V, Pajonk G M. Appl Surf Sci, 2007, 253(14): 6032 − 6040

    32. [32]

      Jiang H, Wang J, Wu S, Yuan Z, Hu Z, Wu R, Liu Q. Polym Degrad Stab, 2012, 97(8): 1527 − 1533

    33. [33]

      Chen Y, Chen Z, Xiao S, Liu H. Thermochim Acta, 2008, 476(1-2): 39 − 43

  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    4. [4]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    5. [5]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    6. [6]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    7. [7]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    8. [8]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    9. [9]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    10. [10]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    11. [11]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    12. [12]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    13. [13]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    14. [14]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    15. [15]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    16. [16]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    17. [17]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    18. [18]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

Metrics
  • PDF Downloads(0)
  • Abstract views(133)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return