Citation: Tian-yu Liu, Wei-jiao Jiang, Wei-xing Yang, Qin Zhang, Qiang Fu. Disentanglement of Polylactide Melt by Oscillatory Shear Stress Field[J]. Acta Polymerica Sinica, ;2018, 0(8): 1107-1115. doi: 10.11777/j.issn1000-3304.2018.18053 shu

Disentanglement of Polylactide Melt by Oscillatory Shear Stress Field

  • Corresponding author: Qiang Fu, qiangfu@scu.edu.cn
  • Received Date: 9 February 2018
    Revised Date: 24 March 2018
    Available Online: 22 May 2018

  • The Haake rotational rheometer was employed to disentangle the polylactide melt by well-controlled oscillatory shear stress with sinusoidal strain and to monitor the melt viscosity in real time. Fisrtly, a PLA sample was disentangled with different strains at various frequency ranges, and the results indicated that the PLA melt represented the lowest melt viscosity which was four orders of magnitude lower than that of the PLA without any treatment when the strain was 50% with the frequency at 3.5 Hz. Then, the molecular weights of all these PLA were measured by gel permeation chromatography (GPC) and almost no change was detected after the oscillatory shear. Taken into account the results of the melt viscosity and the molecular weight measurement, it was reasonable that the significant reduction of PLA melt viscosity was attributed to the effective disentanglement of PLA chains, rather than their degradation. Furthermore, the effect of oscillatory shear on glass transition, crystallization and melting behavior was also studied. It was found that the effective disentanglement of PLA chains was achieved by oscillatory shearing, leading to a lower glass transition temperature and a cold-crystallization temperature together with largely improved crystallinity of PLA. Simultaneously, when compared to the PLA melt without any treatment, the isothermal crystallization of PLA at 120 °C with the lowest melt viscosity also demonstrated that the oscillatory shear could disentangle the PLA melt and thus accelerated the crystallization of PLA. More importantly, the influence of annealing time (1 − 30 min) and temperature (180 − 200 °C) was investigated as well. The semi-crystallization time at 120 °C of disentangled PLA constantly increased with the increasing annealing time and temperature, which got gradually closer to that of PLA without any treatment. These results demonstrated that the disentanglement could be maintained at relatively low temperature and re-entangled rapidly at relatively high temperature. In summary, the Haake rotational rheometer, the common test instrument for the rheological properties of polymer melt, can be employed for the investigation of the disentanglement of polymer melt, which is not merely a simple and effective method to disentangle the polymer melt, but also a well-controlled and real-time monitoring approach for systematically investigating the disentanglement of polymer melt.
  • 加载中
    1. [1]

    2. [2]

      Ibar J P. J Macromol Sci, Part B, 2013, 52(3): 407-441

    3. [3]

      Li Y, Shen K, Zhan J. J Appl Polym Sci, 2006, 102(6): 5292-5296

    4. [4]

    5. [5]

    6. [6]

      Huang D, Yang Y, Zhuang G, Li B. Macromolecules, 1999, 32(20): 6675-6678

    7. [7]

      Psarski M, Piorkowska E, Galeski A. Macromolecules, 2000, 33(3): 916-932

    8. [8]

      Ren Y K, Li Y T, Li L B. Chinese J Polym Sci, 2017, 35(11): 1415-1427

    9. [9]

    10. [10]

      Gong X J, Shi D A, Yang Y K, Jiang T, Meng Y F, Li R K Y, Jiang S C. Chinese Journal of Polymer Science, 2016, 34(8): 1039-1046

    11. [11]

      Xue G, Lu Y, Shi G, Dai Q. Polymer, 1994, 35(4): 892-894

    12. [12]

      Ding J, Xue G, Dai Q, Cheng R. Polymer, 1993, 34(15): 3325-3327

    13. [13]

    14. [14]

    15. [15]

      Ibar J P. J Macromol Sci, Part B, 2013, 52(3): 442-461

    16. [16]

      Ibar J P. J Macromol Sci, Part B 2013, 52(2): 223-309

    17. [17]

      Gao X, Deng C, Ren C, Zhang J, Li Z, Shen K. J Appl Polym Sci, 2012, 124(2): 1392-1397

    18. [18]

      Zhang Y, Zhang J, Qian X, Deng P, Shen K. Polymer, 2012, 53(19): 4318-4327

    19. [19]

    20. [20]

    21. [21]

    22. [22]

    23. [23]

      Ma C G, Chen L, Xiong X M, Zhang J X, Rong M Z, Zhang M Q. Macromolecules, 2004, 37(24): 8829-8831

    24. [24]

      Tsuji H. Macromol Biosci, 2005, 5(7): 569-597

    25. [25]

    26. [26]

      Xiao H, Lu W, Yeh J T. J Appl Polym Sci, 2009, 113(1): 112-121

    27. [27]

      Schmalzer A M, Giacomin A J. Macromol Theor Simul, 2015, 24(3): 181-207

    28. [28]

      Giacomin A J, Gilbert P H, Schmalzer A M. Struct Dynam, 2015, 2(2): 024101

  • 加载中
    1. [1]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    2. [2]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    3. [3]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    4. [4]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    5. [5]

      Jinghan Xu Yang Wang Donghui Wei . Drawing Cross-Sectional Contour Maps of π Molecular Orbitals. University Chemistry, 2025, 40(3): 23-29. doi: 10.12461/PKU.DXHX202403023

    6. [6]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    7. [7]

      Xuewei Qian Xingwen Sun Houjin Li Zhanxiang Liu Yuan Zheng Lin Wu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Shuyong Zhang Jianrong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Recrystallization Experiments. University Chemistry, 2025, 40(5): 66-75. doi: 10.12461/PKU.DXHX202503126

    8. [8]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    9. [9]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    11. [11]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    12. [12]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    15. [15]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    16. [16]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    17. [17]

      Zhexue Lu Ping Wu Huihui Li Libai Wen . 四“味”一体的无机及分析化学课程思政. University Chemistry, 2025, 40(6): 333-340. doi: 10.12461/PKU.DXHX202405196

    18. [18]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    19. [19]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    20. [20]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

Metrics
  • PDF Downloads(0)
  • Abstract views(169)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return