Citation: Jia-jing Zhou, Di Wu, De-rong Lu, Hong-wei Duan. Progress in Self-assembly of Polymer-coated Au Nanoparticles[J]. Acta Polymerica Sinica, ;2018, 0(8): 1033-1047. doi: 10.11777/j.issn1000-3304.2018.18050 shu

Progress in Self-assembly of Polymer-coated Au Nanoparticles

  • Corresponding author: Hong-wei Duan, hduan@ntu.edu.sg
  • Received Date: 7 February 2018
    Revised Date: 5 April 2018
    Available Online: 22 May 2018

  • Gold nanostructures with unique optical, electrical and catalytic properties have found widespread use in diverse fields ranging from optics and sensing to nanomedicine and catalysis. There is growing interest in self-assembly of gold nanostructures because their localized surface plasmon resonance undergoes strongly interparticle coupling in close proximity, leading to collective properties that are distinctively different from that of individual building blocks. Considerable progress has been made in tailored synthesis of gold nanostructures and surface-engineering approaches to introduce functional coatings on the nanostructures, giving rise to nanoscale building blocks with defined structural parameters and properties, which make them excellent model systems to study the self-assembly of nanoparticles driven by functiona coatings. Polymers, especially amphiphilic block copolymers, exhibit intrinsic self-assembly in solution and bulk phase. Accumulated evidence has demonstrated that both molecular structures of the polymers and self-assembly conditions have a key impact on the structures formed by self-assembly, producing a wide spectrum of structures such as spherical micelles, cylindrical micelles, lamellae, and vesicles. As such, polymer coatings, which are commonly explored to impart colloidal stability of nanostructures, have emerged as an intriguing class of functional coatings to direct their self-assembly. The ability to tailor the structural details of the polymer coatings such as molecular weight, graft density and amphiphilicity is key to achieve controlled morphology and functionality of the resultant plasmonic assemblies. In this review, we summarize current strategies for constructing well-defined Au nanoparticle building blocks including " one-pot synthesis”, " grafting to”, and " grafting from” strategies. Based on these methods, assemblies of polymer-decorated nanoparticles were designed and formed across multiple dimensions, which brings about potential applications resulting from emerging optical, electronic, and catalytic properties. A protypical example is surface-enhanced Raman scattering (SERS) which is greatly amplified in the interstitial space of the assemblies because of interparticle plasmonic coupling, providing a transduction mechanism for ultrasensitve detection. The ability of dissipating the energy of light irradiate through the combination of photothermal conversion and Mie-scattering makes it possible for the assemblies of Au nanoparticles to serve as imaging probes and therapeutic agents. Representative assemblies of Au nanoparticles, that have shown potentials for sensing and biomedicine, are highlighted in this review. We also emphasize the fundamental and technical challenges for precise control over polymer-guided self-assembly of gold nanoparticles. The combination of simulation and experiment open the avenue to a systematic understanding on the self-assembly of nanoparticles.
  • 加载中
    1. [1]

      Duan H W, Chen D Y, Jiang M, Gan W J, Li S J, Wang M, Gong J. J Am Chem Soc, 2001, 123(48): 12097-12098

    2. [2]

      Wang J, Jiang M. J Am Chem Soc, 2006, 128(11): 3703-3708

    3. [3]

      Lin M C, Chen G S, Jiang M. Polym Chem, 2014, 5(1): 234-240

    4. [4]

      Zhao Y, Sakai F, Su L, Liu Y J, Wei K C, Chen G S, Jiang M. Adv Mater, 2013, 25(37): 5215-5256

    5. [5]

      Qiu H B, Hudson Z M, Winnik M A, Manners I. Science, 2015, 347(6228): 1329-1332

    6. [6]

      Huang Y J, Mai Y Y, Yang X W, Beser U, Liu J Z, Zhang F, Yan D Y, Mullen K, Feng X L. J Am Chem Soc, 2015, 137(36): 11602-11605

    7. [7]

      Derry M J, Fielding L A, Armes S P. Prog Polym Sci, 2016, 52: 1-18

    8. [8]

      Stefik M, Guldin S, Vignolini S, Wiesner U, Steiner U. Chem Soc Rev, 2015, 44(15): 5076-5091

    9. [9]

      Mai Y Y, Eisenberg A. Chem Soc Rev, 2012, 41(18): 5969-5985

    10. [10]

      Jiang W F, Zhou Y F, Yan D Y. Chem Soc Rev, 2015, 44(12): 3874-3889

    11. [11]

      . Liu Xiaoxia(刘晓霞), Jiang Ming(江明). Acta Polymerica Sinica(高分子学报), 2011, (9): 1007-1019

    12. [12]

      Wu G, Chen S C, Liu C L, Wang Y Z. ACS Nano, 2015, 9(4): 4649-4659

    13. [13]

      Boott C E, Gwyther J, Harniman R L, Hayward D W, Manners I. Nat Chem, 2017, 9(8): 785-792

    14. [14]

      Yao C Z, Wang X R, Liu G H, Hu J M, Liu S Y. Macromolecules, 2016, 49(21): 8282-8295

    15. [15]

      Li X, Iocozzia J, Chen Y H, Zhao S Q, Cui X, Wang W, Yu H F, Lin S L, Lin Z Q. Angew Chem Int Ed, 2018, 57(8): 2046-2070

    16. [16]

      Chen H X, Mu S L, Fang L P, Shen H Z, Zhang J H, Yang B. Nano Res, 2017, 10(10): 3346-3357

    17. [17]

      Gong J X, Li G D, Tang Z Y. Nano Today, 2012, 7(6): 564-585

    18. [18]

      Alkilany A M, Lohse S E, Murphy C J. Acc Chem Res, 2013, 46(3): 650-661

    19. [19]

      Boles M A, Ling D S, Hyeon T, Talapin D V. Nat Mater, 2016, 15(3): 364-364

    20. [20]

      Zhang L, Dai L W, Rong Y, Liu Z Z, Tong D Y, Huang Y J, Chen T. Langmuir, 2015, 31(3): 1164-1171

    21. [21]

      Choueiri R M, Klinkova A, Pearce S, Manners I, Kumacheva E. Macromol Rapid Commun, 2018, DOI: 10.1002/marc.201700554  doi: 10.1002/marc.201700554

    22. [22]

      Nonappa, Lahtinen T, Haataja J S, Tero T R, Hakkinen H, Ikkala O. Angew Chem Int Ed, 2016, 55(52): 16035-16038

    23. [23]

      Xi C X, Marina P F, Xia H B, Wang D Y. Soft Matter, 2015, 11(23): 4562-4571

    24. [24]

      Hsu S W, Rodarte A L, Som M, Arya G, Tao A R. Chem Rev, 2018, 118(6): 3100-3120 DOI: 10.1021/acs.chemrev.7b00364  doi: 10.1021/acs.chemrev.7b00364

    25. [25]

      Nie Z H, Petukhova A, Kumacheva E. Nat Nanotechnol, 2010, 5(1): 15-25

    26. [26]

      Masing F, Mardyukov A, Doerenkamp C, Eckert H, Malkus U, Nusse H, Klingauf J, Studer A. Angew Chem Int Ed, 2015, 54(43): 12612-12617

    27. [27]

      Kocak G, Solmaz G, Dikmen Z, Butun V. J Polym Sci, Part A: Polym Chem, 2018, 56(5): 514-526

    28. [28]

      Pang X C, He Y J, Jung J H, Lin Z Q. Science, 2016, 353(6305): 1268-1272

    29. [29]

      Podhorska L, Delcassian D, Goode A E, Agyei M, McComb D W, Ryan M P, Dunlop I E. Langmuir, 2016, 32(36): 9216-9222

    30. [30]

      Zubarev E R, Xu J, Sayyad A, Gibson J D. J Am Chem Soc, 2006, 128(47): 15098-15099

    31. [31]

      He J, Liu Y J, Babu T, Wei Z J, Nie Z H. J Am Chem Soc, 2012, 134(28): 11342-11345

    32. [32]

      Hu J M, Wu T, Zhang G Y, Liu S Y. J Am Chem Soc, 2012, 134(18): 7624-7627

    33. [33]

      Hui C M, Pietrasik J, Schmitt M, Mahoney C, Choi J, Bockstaller M R, Matyjaszewski K. Chem Mater, 2014, 26(1): 745-762

    34. [34]

      Song J, Huang P, Chen X. Nat Protoc, 2016, 11(11): 2287-2299

    35. [35]

      Braunecker W A, Matyjaszewski K. Prog Polym Sci, 2007, 32(1): 93-146

    36. [36]

      Canning S L, Smith G N, Armes S P. Macromolecules, 2016, 49(6): 1985-2001

    37. [37]

      Edmondson S, Osborne V L, Huck W T S. Chem Soc Rev, 2004, 33(1): 14-22

    38. [38]

      Barrow M, Taylor A, Murray P, Rosseinsky M J, Adams D J. Chem Soc Rev, 2015, 44(19): 6733-6748

    39. [39]

      Cheng L, Song J B, Yin J, Duan H W. J Phys Chem Lett, 2011, 2(17): 2258-2262

    40. [40]

      . Wang X J, Li G P, Chen T, Yang M X, Zhang Z, Wu T, Chen H Y. Nano Lett, 2008, 8(9): 2643-2647

    41. [41]

      Chen G, Wang Y, Yang M X, Xu J, Goh S J, Pan M, Chen H Y. J Am Chem Soc, 2010, 132(11): 3644-3645

    42. [42]

      Cheng Y N, Wang M, Borghs G, Chen H Z. Langmuir, 2011, 27(12): 7884-7891

    43. [43]

      Wang B B, Li B, Zhao B, Li C Y. J Am Chem Soc, 2008, 130(35): 11594-11595

    44. [44]

      Dong B, Li B, Li C Y. J Mater Chem, 2011, 21(35): 13155-13158

    45. [45]

      Wang F K, Phonthammachai N, Mya K Y, Tjiu W W, He C B. Chem Commun, 2011, 47(2): 767-769

    46. [46]

      Nie Z H, Fava D, Kumacheva E, Zou S, Walker G C, Rubinstein M. Nat Mater, 2007, 6(8): 609-614

    47. [47]

      Klinkova A, Therien-Aubin H, Ahmed A, Nykypanchuk D, Choueiri R M, Gagnon B, Muntyanu A, Gale O, Walker G C, Kumacheva E. Nano Lett, 2014, 14(11): 6314-6321

    48. [48]

      Wang H, Chen L Y, Shen X S, Zhu L F, He J T, Chen H Y. Angew Chem Int Ed, 2012, 51(32): 8021-8025

    49. [49]

      Wang H, Song X H, Liu C C, He J T, Chong W H, Chen H Y. ACS Nano, 2014, 8(8): 8063-8073

    50. [50]

      Sardar R, Shumaker-Parry J S. Nano Lett, 2008, 8(2): 731-736

    51. [51]

      Pan S, He L Z, Peng J, Qiu F, Lin Z Q. Angew Chem Int Ed, 2016, 55(30): 8686-8690

    52. [52]

      Edel J B, Kornyshev A A, Kucernak A R, Urbakh M. Chem Soc Rev, 2016, 45(6): 1581-1596

    53. [53]

      Scanlon M D, Smirnov E, Stockmann T J, Peljo P. Chem Rev, 2018, 118(7): 3722-3751 DOI: 10.1021/acs.chemrev.7b00595  doi: 10.1021/acs.chemrev.7b00595

    54. [54]

      Duan H W, Wang D Y, Kurth D G, Mohwald H. Angew Chem Int Ed, 2004, 43(42): 5639-5642

    55. [55]

      Xie Q G, Davies G B, Harting J. ACS Nano, 2017, 11(11): 11232-11239

    56. [56]

      Cheng L, Liu A P, Peng S, Duan H W. ACS Nano, 2010, 4(10): 6098-6104

    57. [57]

      Lee Y H, Shi W X, Lee H K, Jiang R B, Phang I Y, Cui Y, Isa L, Yang Y J, Wang J F, Li S Z, Ling X Y. Nat Commun, 2015, 6: 6990

    58. [58]

      Liu J W, Zhang S Y, Qi H, Wen W C, Yu S H. Small, 2012, 8(15): 2412-2420

    59. [59]

      Zhou J J, Duan B, Fang Z, Song J B, Wang C X, Messersmith P B, Duan H W. Adv Mater, 2014, 26(5): 701-705

    60. [60]

      Shi Q Q, Si K J, Sikdar D, Yap L W, Premaratne M, Cheng W L. ACS Nano, 2016, 10(1): 967-976

    61. [61]

      Tavakkoli K G A, Nicaise S M, Gadelrab K R, Alexander-Katz A, Ross C A, Berggren K K. Nat Commun, 2016, 7: 10518

    62. [62]

      Zhao Y, Thorkelsson K, Mastroianni A J, Schilling T, Luther J M, Rancatore B J, Matsunaga K, Jinnai H, Wu Y, Poulsen D, Frechet J M J, Alivisatos A P, Xu T. Nat Mater, 2009, 8(12): 979-985

    63. [63]

      Kao J, Xu T. J Am Chem Soc, 2015, 137(19): 6356-6365

    64. [64]

      Bai P, Yang S, Bao W, Kao J, Thorkelsson K, Salmeron M, Zhang X, Xu T. Nano Lett, 2017, 17(11): 6847-6854

    65. [65]

      Mei S, Qi H, Zhou T, Li C Y. Angew Chem Int Ed, 2017, 56(44): 13645-13649

    66. [66]

      Song J B, Cheng L, Liu A P, Yin J, Kuang M, Duan H W. J Am Chem Soc, 2011, 133(28): 10760-10763

    67. [67]

      Zhu K N, Zhu Z Y, Zhou H O, Zhang J Y, Liu S Y. Chinese Chem Lett, 2017, 28(6): 1276-1284

    68. [68]

      Song J B, Pu L, Zhou J J, Duan B, Duan H W. ACS Nano, 2013, 7(11): 9947-9960

    69. [69]

      Song J B, Wu B H, Zhou Z J, Zhu G Z, Liu Y J, Yang Z, Lin L S, Yu G C, Zhang F W, Zhang G F, Duan H W, Stucky G D, Chen X Y. Angew Chem Int Ed, 2017, 56(28): 8110-8114

    70. [70]

      Song J B, Fang Z, Wang C X, Zhou J J, Duan B, Pu L, Duan H W. Nanoscale, 2013, 5(13): 5816-5824

    71. [71]

      He J, Huang X L, Li Y C, Liu Y J, Babu T, Aronova M A, Wang S J, Lu Z Y, Chen X Y, Nie Z H. J Am Chem Soc, 2013, 135(21): 7974-7984

    72. [72]

      Liu Y J, Li Y C, He J, Duelge K J, Lu Z Y, Nie Z H. J Am Chem Soc, 2014, 136(6): 2602-2610

    73. [73]

      Liu Y J, Liu B, Nie Z H. Nano Today, 2015, 10(3): 278-300

    74. [74]

      He J, Wei Z J, Wang L, Tomova Z, Babu T, Wang C Y, Han X J, Fourkas J T, Nie Z H. Angew Chem Int Ed, 2013, 52(9): 2463-2468

    75. [75]

      Tang R, Kim C S, Solfiell D J, Rana S, Mout R, Velazquez-Delgado E M, Chompoosor A, Jeong Y, Yan B, Zhu Z J, Kim C, Hardy J A, Rotello V M. ACS Nano, 2013, 7(8): 6667-6673

    76. [76]

      Wu D, Deepankumar K, Ping Y, Tang G P, Saravananprabhu N, Miserez A, Fang W J. Sensor Actuat B-Chem, 2017, 251: 326-333

    77. [77]

      Bansod B, Kumar T, Thakur R, Rana S, Singh I. Biosens Bioelectron, 2017, 94: 443-455

    78. [78]

      Zhang J J, Cheng F F, Li J J, Zhu J J, Lu Y. Nano Today, 2016, 11(3): 309-329

    79. [79]

      Yin J, Wu T, Song J B, Zhang Q, Liu S Y, Xu R, Duan H W. Chem Mater, 2011, 23(21): 4756-4764

    80. [80]

      Lin C Y, Yu C J, Lin Y H, Tseng W L. Anal Chem, 2010, 82(16): 6830-6837

    81. [81]

      Wu Y G, Zhan S S, Wang F Z, He L, Zhi W T, Zhou P. Chem Commun, 2012, 48(37): 4459-4461

    82. [82]

      Zhan S S, Yu M L, Lv J, Wang L M, Zhou P. Aust J Chem, 2014, 67(5): 813-818

    83. [83]

      Liu Y, Dai J J, Xu L, Liu X Y, Liu J S, Li G Y. Sensor Actuat B-Chem, 2016, 237: 216-223

    84. [84]

      Liu Y, Xu L, Liu J S, Liu X Y. Anal Methods, 2015, 7(24): 10151-10161

    85. [85]

      Praig V G, McIlwee H, Schauer C L, Boukherroub R, Szunerits S. J Nanosci Nanotechnol, 2009, 9(1): 350-357

    86. [86]

      Sugunan A, Thanachayanont C, Dutta J, Hilborn J G. Sci Technol Adv Mater, 2005, 6(3-4): 335-340

    87. [87]

      Stewart A F, Lee A, Ahmed A, Ip S, Kumacheva E, Walker G C. ACS Nano, 2014, 8(6): 5462-5467

    88. [88]

      Xiao F, Song J B, Gao H C, Zan X L, Xu R, Duan H W. ACS Nano, 2012, 6(1): 100-110

    89. [89]

      Zan X L, Bai H W, Wang C X, Zhao F Q, Duan H W. Chem-Eur J, 2016, 22(15): 5204-5210

    90. [90]

      Zan X L, Fang Z, Wu J, Xiao F, Huo F W, Duan H W. Biosens Bioelectron, 2013, 49: 71-78

    91. [91]

      Duan B, Zhou J J, Fang Z, Wang C X, Wang X J, Hemond H F, Chan-Park M B, Duan H W. Nanoscale, 2015, 7(29): 12606-12613

    92. [92]

      Song J B, Huang P, Duan H W, Chen X Y. Acc Chem Res, 2015, 48(9): 2506-2515

    93. [93]

      Song J B, Niu G, Chen X Y. Bioconjugate Chem, 2017, 28(1): 105-114

    94. [94]

      Song J B, Zhou J J, Duan H W. J Am Chem Soc, 2012, 134(32): 13458-13469

    95. [95]

      Lin J, Wang S J, Huang P, Wang Z, Chen S H, Niu G, Li W W, He J, Cui D X, Lu G M, Chen X Y, Nie Z H. ACS Nano, 2013, 7(6): 5320-5329

    96. [96]

      Liu Y J, He J, Yang K K, Yi C L, Liu Y, Nie L M, Khashab N M, Chen X Y, Nie Z H. Angew Chem Int Ed, 2015, 54(52): 15809-15812

    97. [97]

      Huang P, Lin J, Li W W, Rong P F, Wang Z, Wang S J, Wang X P, Sun X L, Aronova M, Niu G, Leapman R D, Nie Z H, Chen X Y. Angew Chem Int Ed, 2013, 52(52): 13958-13964

    98. [98]

      Zhou Z J, Tian R, Wang Z Y, Yang Z, Liu Y J, Liu G, Wang R F, Gao J H, Song J B, Nie L M, Chen X Y. Nat Commun, 2017, 8: 15468

    99. [99]

      Liu Y J, Yang X Y, Huang Z Q, Huang P, Zhang Y, Deng L, Wang Z T, Zhou Z J, Liu Y, Kalish H, Khachab N M, Chen X Y, Nie Z H. Angew Chem Int Ed, 2016, 55(49): 15297-15300

  • 加载中
    1. [1]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    4. [4]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    7. [7]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    8. [8]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    9. [9]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    10. [10]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    11. [11]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    12. [12]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    13. [13]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    14. [14]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    15. [15]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    16. [16]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    17. [17]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    18. [18]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    19. [19]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    20. [20]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

Metrics
  • PDF Downloads(0)
  • Abstract views(98)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return