Citation: Yan-An Wang, Xiao-Tao Zhang, Yan Shi, Zhi-Feng Fu, Wan-tai Yang. Reversible-deactivation Radical Polymerization of Methyl Methacrylate Mediated by Carbodiimide Catalysts[J]. Acta Polymerica Sinica, ;2018, 0(10): 1287-1296. doi: 10.11777/j.issn1000-3304.2018.18046 shu

Reversible-deactivation Radical Polymerization of Methyl Methacrylate Mediated by Carbodiimide Catalysts

  • Corresponding author: Yan Shi, shiyan@mail.buct.edu.cn
  • Received Date: 5 February 2018
    Revised Date: 9 March 2018
    Available Online: 24 May 2018

  • The reversible-deactivation radical polymerization (RDRP) of methyl methacrylate (MMA) was carried out utilizing an alkyl iodide in situ formed as initiator and dicyclohexylcarbodiimide (DCC) or N,N′-diisopropylcarbodiimide (DIC) as highly efficient organic catalysts for the first time. Firstly, the catalytic activity of the two catalysts was demonstrated and compared. The control of the polymerization by DCC was better than that by DIC under the same experimental conditions. Then the influence of the amount of catalyst DCC, the amount of traditional initiators and the type of solvents on the polymerization was investigated in detail. The results show that the addition of DCC or DIC catalyst can effectively reduce the polydispersity index (PDI = Mw/Mn), as compared with the reverse iodine chain transfer polymerization (RITP). The catalytic performance is excellent with the ratio of [MMA]0:[I2]0:[ABVN]0:[DCC]0 = 200:1:1.7:4. The measured molecular weight by GPC is consistent with the theoretical molecular weight, and the molecular weight increases linearly with the increase in conversion rate. The molecular weight polydispersity index is small (PDI < 1.26). The polymerizations of MMA in different solvents were carried out. The induction period is shortened and the polymerization rate is increased with the increase of catalyst or initiator amount. The polymerizations have good control effect in toluene, benzene, tetrahydrofuran (THF), anisole. The structure and the iodine-end-capped structure of the obtained PMMA was demonstrated by 1H-NMR spectrum. The calculated Mn,NMR was in good agreement with Mn,GPC, and the fraction of iodine chain end of the PMMA chains was up to 97.5%, and the iodine terminus could be efficiently reactivated for chain extension. Last, the mechanism of the polymerization mediated by carbodiimide is discussed based on free radical trapping experiments and ultraviolet absorption. The high conversion of CP-I to CPo radical catalyzed by DIC and the complexation peak of I2/carbodiimide detected by ultraviolet absorption spectroscopy demonstrate that the polymerization catalyzed by carbodiimide proceeds according to the reversible complexation mediated polymerization mechanism.
  • 加载中
    1. [1]

      Jenkins D, Jones R G, Moad G. Pure Appl Chem, 2010, 82(5): 483 − 491

    2. [2]

      Otsu T, Matyjaszewski K. Macromol Rapid Commun, 1982, 26(3): 127 − 132

    3. [3]

      Hawker C J, Bosman A W, Harth E. Chem Rev, 2001, 101(12): 3661 − 3688

    4. [4]

      Xia J H, Matyjaszewski K. Macromolecules, 1997, 30(26): 8161 − 8164

    5. [5]

      Moad G, Rizzardo E, hang S H. Aust J Chem, 2006, 59(6): 669 − 692

    6. [6]

      Wolpers A, Vana P. Macromolecules, 2014, 47(3): 954 − 963

    7. [7]

      Goto A, Ohno K, Fukuda T. Macromolecules, 1998, 31(9): 2809 − 2814

    8. [8]

      Matyjaszewski K, Gaynor S, Wang J. Macromolecules, 1995, 28(6): 2093 − 2095

    9. [9]

      Ohtsuki A, Lei L, Tanishima M, Goto A, Kaji H. J Am Chem Soc, 2015, 137(16): 5610 − 5617

    10. [10]

      Goto A, Zushi H, Hirai N, Wakada T, Kwak Y, Fukuda T. Macromol Symp, 2007, 248(1): 126 − 131

    11. [11]

      Tanishima M, Goto A, Lei L, Ohtsuki A, Kaji A, Nomura A, Tsujii Y, Yamaguchi Y, Komatsu H, Miyamoto M. Polymers, 2014, 6(2): 311 − 326

    12. [12]

      Lei L, Tanishima M, Goto A, Kaji H. Polymers, 2014, 6(3): 860 − 872

    13. [13]

      David G, Boyer C, Tonnar J, Ameduri B, Lacroix-Desmazes P, Boutevin B. Chem Rev, 2006, 37(51): 3936 − 3962

    14. [14]

      Tonnar J, Lacroix-Desmazes P. Polymer, 2016, 106(2): 267 − 274

    15. [15]

      Boyer C, Lacroix-Desmazes P, Robin J J, Boutevin B. Macromolecules, 2006, 39(12): 4044 − 4053

    16. [16]

      Enriquez-Medrano F J, Maldonado-Textle H, Hernandez-Valdez M, Lacroix-Desmazes P, Guerrero-Santos R. Polym Chem, 2013, 4(4): 978 − 985

    17. [17]

      Goto A, Zushi H, Hirai N, Wakada T, Tsujii Y, Fukuda T. J Am Chem Soc, 2007, 129(43): 13347 − 13354

    18. [18]

      Goto A, Zushi H, Hirai N, Wakada T, Kwak Y, Fukuda T. Macromol Symp, 2007, 248(1): 126 − 131

    19. [19]

      Bai L J, Zhang L F, Liu Y, Pan X Q, Cheng Z P, Zhu X L. Polym Chem, 2013, 4(10): 3069 − 3076

    20. [20]

      Goto A, Tsujii Y, Kaji H. ACS Symp Ser, 2012, 1100: 305 − 315

    21. [21]

      Goto A, Ohtsuki A, Ohfuji H, Tanishima M, Kaji H. J Am Chem Soc, 2013, 135(30): 11131 − 11139

    22. [22]

      Sarkar J, Xiao L, Goto A. Macromolecules, 2016, 49(14): 5033 − 5042

    23. [23]

      Xiao L Q, Sakakibara K, Tsujii Y, Goto A. Macromolecules, 2017, 50(5): 1882 − 1891

    24. [24]

      Goto A, Suzuki T, Ohfuji H, Tanishima M, Fukuda T, Tsujii Y, Kaji H. Macromolecules, 2011, 44(44): 8709 − 8715

    25. [25]

      Wang W X, Bai L J, Chen H, Xu H, Niu Y Z, Tao Q, Cheng Z P. RSC Adv, 2016, 6(99): 97455 − 97462

    26. [26]

      Wang Y A, Shi Y, Fu X F, Yang W T. Polym Chem, 2017, 8: 6073 − 6085

    27. [27]

      Lei L, Tanishima M, Goto A, Kaji H, Yamaguchi Y, Komatsu H, JitsukawaT, Miyamoto M. Macromolecules, 2014, 47(9): 6610 − 6618

    28. [28]

      Chen Kelong

    29. [29]

      Lei L, Tanishima M, Goto A, Kaji H. Polymers, 2014, 6(3): 860 − 872

    30. [30]

      Bai L J, Wang W X, Chen H, Wang M H, Cheng Z P. RSC Adv, 2015, 5(44): 34769 − 34776

    31. [31]

      Iwasaki N. J Chem Soc Jpn Chem Ind, 1998, (4): 231 − 239

    32. [32]

      Wright T, Chirowodza H, Pasch H. Macromolecules, 2012, 45(7): 2995 − 3003

    33. [33]

      Lacroix-Desmazes P, Severac B, Boutevin B. Macromolecules, 2005, 38(38): 6299 − 3609

    34. [34]

      Pascual S, Coutin B, Tardi M, Polton A, Vairon J P. Macromolecules, 1999, 32(5): 1432 − 1437

    35. [35]

      Robinson K L, Khan M A, M. de Paz Báñez M V, Wang X S, Armes S P. Macromolecules, 2001, 34(10): 3155 − 3158

    36. [36]

      Braunecker W A, Itami Y, Matyjaszewski K. Macromolecules, 2005, 38(23): 9402 − 9404

    37. [37]

      Ando T, Kamigaito M, Sawamoto M. Macromolecules, 1997, 30(16): 4507 − 4510

  • 加载中
    1. [1]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    2. [2]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    3. [3]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    4. [4]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    5. [5]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    6. [6]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    10. [10]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    13. [13]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    14. [14]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    17. [17]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    18. [18]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

Metrics
  • PDF Downloads(0)
  • Abstract views(99)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return