Citation: Lue Xiang, Wen Zhu, Mei-lin Long, Ke Zhang, Yong-ming Chen. Synthesis of Triblock Bottlebrush Copolymer and Its Solution Self-assembly to Form Porous Nanoparticles[J]. Acta Polymerica Sinica, ;2018, 0(7): 917-929. doi: 10.11777/j.issn1000-3304.2018.18043 shu

Synthesis of Triblock Bottlebrush Copolymer and Its Solution Self-assembly to Form Porous Nanoparticles

  • A triblock bottlebrush copolymer, poly(N,N-dimethyl acrylamide)-block-(polyacrylate-graft- (polystyrene-alternate-poly(L-lactide)))-block-poly(N,N-dimethyl acrylamide) (PDMA-b-(PA-g-(PS-alt-PLLA))-b-PDMA), was prepared with an amphiphilic coil-rod-coil macromolecular structure based on the combination of reversible addition-fragmentation chain transfer polymerization (RAFT), copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC), and ring-opening polymerization (ROP). For the formation of the triblock bottlebrush copolymer, RAFT was used to prepare the well-defined triblock copolymer main chain of PDMA-b-PA-b-PDMA. CuAAC was then employed to graft the PS side chains onto the reactive PA block to form the triblock bottlebrush copolymer PDMA-b-(PA-g-PS)-b-PDMA with PS side chains. The in situ ROP of L-lactide to graft PLLA from PA block finally produced the triblock bottlebrush copolymer of PDMA-b-(PA-g-(PS-alt-PLLA))-b-PDMA with V-shaped side chains of PS and PLLA. In this macromolecule, PDMA formed the hydrophilic coil blocks while the bottlebrush polymer of PA-g-(PS-alt-PLLA) formed the hydrophobic rod block. Self-assembly of the amphiphilic PDMA-b-(PA-g-(PS-alt-PLLA))-b-PDMA was subsequently investigated in selective solvents. Due to the unique coil-rod-coil molecular structure, this triblock bottlebrush copolymer self-assembled into sheet-like micelles or vesicles in the selective solvents of THF/methanol or THF/ethanol, respectively. In these self-assemblies, the coil hydrophilic PDMA block formed the dispersing shell to keep their dispersion while the rigid hydrophobic bottlebrush block aggregated into the sheet-like cores to maintain stability of the self-assemblies. The PS and PLLA side chains with V-shaped structure along the middle blocks microphase-separated inside the aggregated micellar sheet or vesicle wall, in which the isolated PLLA microdomain was surrounded by the continuous PS microdomain. Furthermore, the selective hydrolysis of PLLA microdomain left the nanopores inside the cores of micelles and vesicles. It has been demonstrated the hydrolysis rate was heavily depended on the morphology of the self-assemblies, where the hydrolysis of PLLA microdomains of sheet-like micelles was much faster than that of the corresponding vesicles.
  • 加载中
    1. [1]

      Zhang M F, Müller A H E. J Polym Sci, Part A: Polym Chem,2005, 43(16): 3461-3481  doi: 10.1002/(ISSN)1099-0518

    2. [2]

      Sheiko S S, Sumerlin B S, Matyjaszewski K. Prog Polym Sci, 2008, 33(7): 759-785  doi: 10.1016/j.progpolymsci.2008.05.001

    3. [3]

      Verduzco R, Li X Y, Peseka S L, Steinc G E. Chem Soc Rev, 2015, 44(8): 2405-2420  doi: 10.1039/C4CS00329B

    4. [4]

      Müllner M, Müller A H E. Polymer, 2016, 98: 389-401  doi: 10.1016/j.polymer.2016.03.076

    5. [5]

      Feng C, Li Y J, Yang D, Hu J H, Zhang X H, Huang X Y. Chem Soc Rev, 2011, 40(3): 1282-1295  doi: 10.1039/B921358A

    6. [6]

      Djalali R, Li S Y, Schmidt M. Macromolecules, 2002, 35(11): 4282-4288  doi: 10.1021/ma0113733

    7. [7]

      Huang K, Rzayev J. J Am Chem Soc, 2009, 131(19): 6880-6885  doi: 10.1021/ja901936g

    8. [8]

      Müllner M. Macromol Chem Phys, 2016, 217(20): 2209-2222  doi: 10.1002/macp.v217.20

    9. [9]

      Johnson J A, Lu Y Y, Burts A O, Lim Y H, Finn M G, Koberstein J T, Turro N J, Tirrell D A, Grubbs R H. J Am Chem Soc, 2011, 133(3): 559-566  doi: 10.1021/ja108441d

    10. [10]

      Johnson J A, Lu Y Y, Burts A O, Xia Y, Durrell A C, Tirrell D A, Grubbs R H. Macromolecules, 2010, 43(24): 10326-10335  doi: 10.1021/ma1021506

    11. [11]

      Yuan J Y, Xu Y Y, Walther A,Bolisetty S, Schumacher M, Schmalz H, Ballauff M, Müller A H E. Nat Mater, 2008, 7(9): 718-722  doi: 10.1038/nmat2232

    12. [12]

      Yuan J Y, Xu Y Y, Müller A H E. Chem Soc Rev, 2011, 40(2): 640-655  doi: 10.1039/c0cs00087f

    13. [13]

      Daniel W F M, Burdynska J, Vatankhah-Varnoosfaderani M, Matyjaszewski K, Paturej J, Rubinstein M, Dobrynin A V, Sheiko S S. Nat Mater, 2016, 15(2): 183-189  doi: 10.1038/nmat4508

    14. [14]

      Miyake G M, Piunova V A,Weitekamp R A, Grubbs R H. Angew Chem Int Ed, 2012, 51(45): 11246-11248  doi: 10.1002/anie.201205743

    15. [15]

      Macfarlane R J, Kim B, Lee B, Weitekamp R A, Bates C M, Lee S F, Chang A B, Delaney K T, Fredrickson G H, Atwater H A, Grubbs R H. J Am Chem Soc, 2014, 136(50): 17374-17377  doi: 10.1021/ja5093562

    16. [16]

      Bolton J, Bailey T S, Rzayev J. Nano Lett, 2011, 11(3): 998-1001  doi: 10.1021/nl103747m

    17. [17]

      Song D P, Shahin S, Xie W T, Mehravar S, Liu X H, Li C, Norwood R A, Lee J H, Watkins J J. Macromolecules, 2016, 49(14): 5068-5075  doi: 10.1021/acs.macromol.6b00926

    18. [18]

      Sun G R, Cho S H, Clark C, Verkhoturov S V, Eller M J, Li A, Pavia-Jimenez A, Schweikert E A, Thackeray J W, Trefonas P, Wooley K L. J Am Chem Soc, 2013, 135(11): 4203-4206  doi: 10.1021/ja3126382

    19. [19]

      Neiser M W, Muth S, Kolb U, Harris J R, Okuda J, Schmidt M. Angew Chem Int Ed, 2004, 43(24): 3192-3195  doi: 10.1002/(ISSN)1521-3773

    20. [20]

      Li Z, Ma J, Cheng C, Zhang K, Wooley K L. Macromolecules,2010, 43(3): 1182-1184  doi: 10.1021/ma902513n

    21. [21]

      Li Z, Ma J, Lee N S, Wooley K L. J Am Chem Soc, 2011, 133(5): 1228-1231  doi: 10.1021/ja109191z

    22. [22]

      Fenyves R, Schmutz M, Horner I J, Bright F V, Rzayev J. J Am Chem Soc, 2014, 136(21): 7762-7770  doi: 10.1021/ja503283r

    23. [23]

      Zehm D, Laschewsky A, Gradzielski M, Prevost S, Liang H, Rabe J P, Schweins R, Gummel J. Langmuir, 2010, 26(5): 3145-3155  doi: 10.1021/la903087p

    24. [24]

      Schappacher M, Deffieux A. Science, 2008, 319(5869): 1512-1515  doi: 10.1126/science.1153848

    25. [25]

      Luo H Y, Santos J L, Herrera-Alonso M. Chem Commun, 2014, 50(5): 536-538  doi: 10.1039/C3CC46834H

    26. [26]

    27. [27]

      Gröschel A H, Schacher F H, Schmalz H, Borisov O V, Zhulina E B, Walther A, Müller A H E. Nat Commun, 2012, 3: 710  doi: 10.1038/ncomms1707

    28. [28]

      Sun G R, Cui H G, Lin L Y, Lee N S, Yang C, Neumann W L, Freskos J N, Shieh J J, Dorshow R B, Wooley K L. J Am Chem Soc, 2011, 133(22): 8534–8543  doi: 10.1021/ja200182t

    29. [29]

      Kubowicz S, Baussard J F, Lutz J F, Thünemann A F, Berlepsch H V, Laschewsky A. Angew Chem Int Ed, 2005, 44 (33): 5262-5265  doi: 10.1002/(ISSN)1521-3773

    30. [30]

      Hanisch A, Gröschel A H, Förtsch M, Drechsler M, Jinnai H, Ruhland T M, Schacher F H, Müller A H E. ACS Nano, 2013, 7(5): 4030–4041  doi: 10.1021/nn400031u

    31. [31]

      Saito N, Liu C, Lodge T P, Hillmyer M A. ACS Nano, 2010, 4(4): 1907–1912  doi: 10.1021/nn9016873

    32. [32]

      Asano I, So S, Lodge T P. J Am Chem Soc, 2016, 138 (14): 4714–4717  doi: 10.1021/jacs.6b01697

    33. [33]

      Qiu H B, Hudson Z M, Winnik M A, Manners I. Science, 2015, 347 (6228): 1329−1332  doi: 10.1126/science.1261816

    34. [34]

      Chen Y C, Zhang K, Wang X J, Zhang F W, Zhu J H, Mays J W, Wooley K L, Pochan D J. Macromolecules, 2015, 48 (16): 5621–5631  doi: 10.1021/acs.macromol.5b00752

    35. [35]

      Gröschel A H, Müller A H E. Nanoscale, 2015, 7(28): 11841-11876  doi: 10.1039/C5NR02448J

    36. [36]

      Moughton A O, Hillmyer M A, Lodge T P. Macromolecules, 2012, 45(1): 2-19  doi: 10.1021/ma201865s

    37. [37]

      Shi Y, Zhu W, Yao D D, Long M L, Peng B, Zhang K, Chen Y M. ACS Macro Lett, 2014, 3(1): 70-73  doi: 10.1021/mz400619g

    38. [38]

      Long M L, Shi Y, Zhang K, Chen Y M. Macromol Rapid Commun, 2016, 37(7): 605-609  doi: 10.1002/marc.v37.7

    39. [39]

      Zhu H, Deng G H, Chen Y M. Polymer, 2008, 49(2): 405-411  doi: 10.1016/j.polymer.2007.11.037

    40. [40]

      Zhao P, Liu L X, Feng X Q, Wang C, Shuai X T, Chen Y M. Macromol Rapid Commun, 2012, 33(16): 1351-1355  doi: 10.1002/marc.201200172

    41. [41]

      Zhao P, Yan Y C, Feng X Q, Liu L X, Wang C, Chen Y M. Polymer, 2012, 53(10): 1992-2000  doi: 10.1016/j.polymer.2012.02.055

    42. [42]

      Yan Y C, Shi Y, Zhu W, Chen Y M. Polymer, 2013, 54(21): 5634-5642  doi: 10.1016/j.polymer.2013.08.036

    43. [43]

      Shi Y, Wang X F, Graff R W, Phillip W A, Gao H F. J Polym Sci, Part A: Polym Chem, 2015, 53(2): 239-248  doi: 10.1002/pola.27307

    44. [44]

      Gao H F, Matyjaszewski K. J Am Chem Soc, 2007, 129(20): 6633-6639  doi: 10.1021/ja0711617

    45. [45]

      Golas P L, Matyjaszewski K. Chem Soc Rev, 2010, 39(4): 1338-1354  doi: 10.1039/B901978M

    46. [46]

      Farah S, Anderson D G, Langer R. Adv Drug Deliv Rev, 2016, 107:367-392  doi: 10.1016/j.addr.2016.06.012

    47. [47]

      Choi P. Macromol Rapid Commun, 2002, 23(8): 484-487  doi: 10.1002/1521-3927(20020501)23:8<484::AID-MARC484>3.0.CO;2-K

    48. [48]

    49. [49]

      Ruzette A V, Tence-Girault S, Leibler L, Chauvin F, Bertin D, Guerret O, Gerard P. Macromolecules, 2006, 39(17): 5804-5814  doi: 10.1021/ma060541u

    50. [50]

      Ozdemir C, Guener A. Eur Polym J, 2007, 43(7): 3068-3093  doi: 10.1016/j.eurpolymj.2007.02.022

    51. [51]

      Fathi-Azarbayjani A, Abbasi M, Vaez-Gharamaleki J, Jouyban A. J Mol Liq, 2016, 215: 339-344  doi: 10.1016/j.molliq.2015.12.005

  • 加载中
    1. [1]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    2. [2]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    3. [3]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    4. [4]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    5. [5]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    6. [6]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    7. [7]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    8. [8]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    9. [9]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    10. [10]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    11. [11]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    12. [12]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    13. [13]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    18. [18]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    19. [19]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(0)
  • Abstract views(133)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return