Citation: Li-yuan Wang, Ping-zhang Cheng, Ming-yu Guo. Stretchable and Functional Supramolecular Hydrogels Based on the Template Effect of Poly(β-cyclodextrin)[J]. Acta Polymerica Sinica, ;2018, 0(8): 1097-1106. doi: 10.11777/j.issn1000-3304.2018.18041 shu

Stretchable and Functional Supramolecular Hydrogels Based on the Template Effect of Poly(β-cyclodextrin)

  • Corresponding author: Ming-yu Guo, guomingyu@suda.edu.cn
  • Received Date: 2 February 2018
    Revised Date: 8 March 2018
    Available Online: 1 March 2018

  • β-cyclodextrin-ferrocene host-guest inclusion complex has been widely used to construct various functional supramolecular hydrogels, but all these reported hydrogels are often very weak and/or brittle. In this work, β-cyclodextrin (β-CD) based linear copolymer (polyβ-CD) was synthesized and used as the macromolecular host, hydrophilic and flexible spacer modified ferrocene (Fc) monomer acted as the guest. The polymerizable Fc monomer was preloaded on polyβ-CD to form a novel type of ‘macromolecular supramolecular cross-linker’ (MSCL) owing to the inclusion complexation between β-CD and Fc. For the first time, stretchable, stab-resistant and adhesive supramolecular hydrogels were prepared via simple free-radical copolymerization of MSCL and acrylamide. Tensile-testing results showed that the obtained supramolecular hydrogel can be stretched up to more than 30 times of its original length without breaking. The gel can also be stabbed by sharp tips of scissors or pencil without fracture, indicating excellent stab resistance property. At the same time, the hydrogel also exhibited strong adhesion to the surfaces of human hand, hydrophilic glass or hydrophobic porcine skin. We attribute these distinguished behaviors to the successful use of polyβ-CD and the introduction of flexible hydrophilic spacer to the Fc monomer. Firstly, polyβ-CD acted as a macromolecular supramolecular imprint to form pre-organized Fc-polyβ-CD complexes, and thus resulted in relatively local high density of pendent Fc groups in the polymeric network. This is different from most of the reported host-guest interaction based supramolecular hydrogels, where the host and guest groups are randomly attached in the polymeric network. Secondly, after copolymerization, polyβ-CD was homogeneously immersed in the network by noncovalent interaction but not covalently conjugated in the network, which would greatly limit its mobility. Finally, the introduction of hydrophilic spacer on Fc not only can yield water soluble Fc-polyβ-CD macromolecular supramolecular complex, but also provide the released free Fc groups with more flexibility. Altogether, the local high density of both the guest and host groups in the network combined with their relatively high flexibility provided the present supramolecular hydrogels with excellent mechanical properties.
  • 加载中
    1. [1]

      Annabi N, Tamayol A, Uquillas J A, Akbari M, Bertassoni L E, Cha C, Camci-Unal G, Dokmeci M R, Peppas N A. Adv Mater, 2014, 26(1): 85-124  doi: 10.1002/adma.201303233

    2. [2]

      Calvert P. Adv Mater, 2009, 21(7): 743-756  doi: 10.1002/adma.v21:7

    3. [3]

      Thiele J, Ma Y, Bruekers S M C, Ma S, Huck W T S. Adv Mater, 2014, 26(1): 125-148  doi: 10.1002/adma.201302958

    4. [4]

      Doering A, Birnbaum W, Kuckling D. Chem Soc Rev, 2013, 42(17): 7391-7420  doi: 10.1039/c3cs60031a

    5. [5]

      Du X W, Zhou J, Shi J F, Xu B. Chem Rev, 2015, 115(24): 13165-13307  doi: 10.1021/acs.chemrev.5b00299

    6. [6]

      Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Chem Rev, 2016, 116(3): 1496-1539  doi: 10.1021/acs.chemrev.5b00303

    7. [7]

      Okumura Y, Ito K. Adv Mater, 2001, 13(7): 485-487  doi: 10.1002/(ISSN)1521-4095

    8. [8]

      Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Adv Mater, 2003, 15(14): 1155-1158  doi: 10.1002/adma.200304907

    9. [9]

      Haraguchi K, Takehisa T. Adv Mater, 2002, 14(16): 1120-1124  doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9

    10. [10]

      Huang T, Xu H, Jiao K, Zhu L, Brown H R, Wang H. Adv Mater, 2007, 19(12): 1622-1626  doi: 10.1002/(ISSN)1521-4095

    11. [11]

      Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung U. Macromolecules, 2008, 41(14): 5379-5384  doi: 10.1021/ma800476x

    12. [12]

      Lin P, Ma S, Wang X, Zhou F. Adv Mater, 2015, 27(12): 2054-2059  doi: 10.1002/adma.v27.12

    13. [13]

      Bai T, Zhang P, Han Y, Liu Y, Liu W, Zhao X, Lu W. Soft Matter, 2011, 7(6): 2825-2831  doi: 10.1039/c0sm01108h

    14. [14]

      Abdurrahmanoglu S, Can V, Okay O. Polymer, 2009, 50(23): 5449-5455  doi: 10.1016/j.polymer.2009.09.042

    15. [15]

      Jiang G, Liu C, Liu X, Zhang G, Yang M, Liu F. Macromol Mater Eng, 2009, 294(12): 815-820

    16. [16]

      Chen Q, Zhu L, Zhao C, Wang Q, Zheng. J. Adv Mater, 2013, 25(30): 4171-4176  doi: 10.1002/adma.201300817

    17. [17]

      Sun T L, Kurokawa T, Kuroda S, Bin Ihsan A, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat Mater, 2013, 12(10): 932-937  doi: 10.1038/nmat3713

    18. [18]

      Dai X, Zhang Y, Gao L, Bai T, Wang W, Cui Y, Liu W. Adv Mater, 2015, 27(23): 3566-3571  doi: 10.1002/adma.v27.23

    19. [19]

      Guo M, Pitet L M, Wyss H M, Vos M, Dankers P Y W, Meijer E W. J Am Chem Soc, 2014, 136(19): 6969-6977  doi: 10.1021/ja500205v

    20. [20]

      Cui Y, Tan M, Zhu A, Guo M. J Mater Chem B, 2014, 2(20): 2978-2982  doi: 10.1039/C4TB00315B

    21. [21]

      Cui Y, Tan M, Zhu A, Guo M. J Mater Chem B, 2015, 3(14): 2834-2841  doi: 10.1039/C5TB00095E

    22. [22]

      Yang N, Yang H, Shao Z, Guo M. Macromol Rapid Commun, 2017, 38(17): 1700275  doi: 10.1002/marc.201700275

    23. [23]

      Guo M, Jiang M. Macromol Rapid Commum, 2010, 31(19): 1736-1739  doi: 10.1002/marc.v31:19

    24. [24]

      Guo M, Jiang M, Pispas S, Yu W, Zhou C. Macromolecules, 2008, 41(24): 9744-9749  doi: 10.1021/ma801975s

    25. [25]

      Liu J, Chen G, Guo M, Jiang M. Macromolecules, 2010, 43(19): 8086-8093  doi: 10.1021/ma101437k

    26. [26]

      Tan M, Cui Y, Zhu A, Han H, Guo M, Jiang M. Polym Chem, 2015, 6(43): 7543-7549  doi: 10.1039/C5PY01073J

    27. [27]

      Dong Z Q, Cao Y, Yuan Q J, Wang Y F, Li J H, Li B J, Zhang S. Macromol Rapid Commun, 2013, 34(10): 867-872  doi: 10.1002/marc.201300084

    28. [28]

      Tomatsu I, Hashidzume A, Harada A. Macromol Rapid Commun, 2006, 27(4): 238-241  doi: 10.1002/(ISSN)1521-3927

    29. [29]

      Nakahata M, Takashima Y, Yamaguchi H, Harada A. Nat Commun, 2011, 2:511  doi: 10.1038/ncomms1521

    30. [30]

      Koopmans C, Ritter H. Macromolecules, 2008, 41(20): 7418-7422  doi: 10.1021/ma801202f

    31. [31]

      Renard E, Deratani A, Volet G, Sebille B. Eur Polym J, 1997, 33(1): 49-57  doi: 10.1016/S0014-3057(96)00123-1

    32. [32]

      Kim B J, Oh D X, Kim S, Seo J H, Hwang D S, Masic A, Han D K, Cha H J. Biomacromolecules, 2014, 15(5): 1579-1585  doi: 10.1021/bm4017308

  • 加载中
    1. [1]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    2. [2]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    3. [3]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    4. [4]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    5. [5]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    8. [8]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    9. [9]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    10. [10]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    11. [11]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    12. [12]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    13. [13]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    14. [14]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    15. [15]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    16. [16]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    17. [17]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    20. [20]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

Metrics
  • PDF Downloads(0)
  • Abstract views(128)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return