Citation: Yi-bo Qin, Peng-xiang Yang, Sheng-bin Shi, Hong-fan Sun, Chuang-nian Zhang, De-ling Kong. Redox-sensitive Alginate Prodrug Nanoparticles for Tumor Photodynamic Therapy[J]. Acta Polymerica Sinica, ;2018, 0(7): 909-916. doi: 10.11777/j.issn1000-3304.2018.18039 shu

Redox-sensitive Alginate Prodrug Nanoparticles for Tumor Photodynamic Therapy

  • Nanoparticles have been extensively explored as an effective means to deliver photosensitizers for photodynamic therapy (PDT) against cancer. In this work, Pheophorbide A (PheoA), a hydrophobic photosensitizer, was conjugated to natural polysaccharide alginate (PheoA-ALG) via a redox-sensitive disulfide linkage. The critical aggregation concentration (CAC) of PheoA-ALG in aqueous solution was 73.51 μg/mL, detected by pyrene monomer fluorescence probe technology. The resulting amphiphilic PheoA-ALG could form self-assembled nanoparticles (PheoA-ALG NPs) in an aqueous medium as prodrug nanoparticles for tumor photodynamic therapy. The physical and chemical properties of PheoA-ALG NPs were studied. TEM and DLS revealed that PheoA-ALG NPs were monodisperse spherical structures with a hydrodynamic diameter about 198 nm. PheoA release profiles in vitro indicated that PheoA release from PheoA-ALG NPs was redox-sensitive. Whereafter, the cellular uptake and cytotoxicity of PheoA-ALG NPs were investigated in vitro. Cellular uptake results showed that PheoA-ALG NPs were readily taken up by B16 tumor cells and enhanced PheoA uptake was detectable in PheoA-ALG NPs-treated B16 cells in comparison to carrier free drugs. Under light irradiation, PheoA-ALG NPs also elicited intracellular ROS generation, which led to an enhanced toxicity in B16 cells both in vitro and in vivo. The CCK-8 assay showed that PheoA-ALG NPs had good cellular compatibility without cytotoxic in vitro without light irradiation, and PheoA-ALG NPs exhibited light dependent cytotoxic response to B16 cells. After light irradiation, IC50 of PheoA-ALG NPs decreased to 0.16 μg mL−1, which was about 0.67-fold lower than those of the free PheoA groups with light irradiation. In vivo anti-tumor efficacy of PheoA-ALG NPs was assessed using B16 tumor-bearing mice. Notably, mice treated with PheoA-ALG NPs under light irradiation displayed the highest inhibition ratio of 72.8%, among those treated with free PheoA (45.8%). These results suggest that PheoA-ALG NPs have good potential for tumor photodynamic therapy.
  • 加载中
    1. [1]

      Siegel R L, Miller K D, Jemal A. CA-Cancer J Clin, 2016, 66: 7-30

    2. [2]

      Zhang Y, Li N, Suh H, Irvine D J. Nat Commun, 2018, 9: 1-15

    3. [3]

      Zhang D, Wen L, Huang R, Wang H, Hu X, Xing D. Biomaterials, 2018, 153:14-26

    4. [4]

      Wei Q, Chen Y, Ma X, Ji J, Qiao Y, Zhou B, Ma F, Ling D, Zhang H, Tian M, Tian J, Zhou M. Adv Funct Mater, 2018, 28:1704634

    5. [5]

      Zhou F, Feng B, Wang T, Wang D, Meng Q, Zeng J, Zhang Z, Wang S, Yu H, Li Y. Adv Funct Mater, 2017, 27: 1606530

    6. [6]

      Zhu G, Zhang F, Ni Q, Niu G, Chen X. ACS Nano, 2017, 11: 2387-2392

    7. [7]

      Zhou F, Feng B, Wang T, Wang D, Cui Z, Wang S, Ding C, Zhang Z, Liu J, Yu H, Li Y. Adv Funct Mater, 2017, 27: 1703674

    8. [8]

      Zhang X, Li Q, Sun X, Zhang B, Kang H, Zhang F, Jin Y. ACS Biomater-SciEng, 2017, 3: 1008-1016

    9. [9]

      You Q, Sun Q, Wang J, Tan X, Pang X, Liu L, Yu M, Tan F, Li N. Nanoscale, 2017, 9: 3784-3796

    10. [10]

      Agostinis P, Berg K, Cengel K A, Foster T H, Girotti A W, Gollnick S O, Hahn S M, Hamblin M R, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson B C, Golab J. CA-Cancer J Clin, 2011, 61: 250-281

    11. [11]

      Renno R Z, Miller J W. Adv Drug Deliver Rev, 2001, 52: 63-78

    12. [12]

      Sharman W M, van Lier J E, Allen C M. Adv Drug Deliver Rev, 2004, 56:53-76

    13. [13]

      Huang L, Li Z, Zhao Y, Yang J, Yang Y, Pendharkar A I, Zhang Y, Kelmar S, Chen L, Wu W, Zhao J, Han G. Adv Mater, 2017, 29: 1604789

    14. [14]

      Gibot L, Lemelle A, Till U, Moukarzel B, Mingotaud A F, Pimienta V, Saint-Aguet P, Rols M P, Gaucher M, Violleau F, Chassenieux C, Vicendo P. Biomacromolecules, 2014, 15:1443-1455

    15. [15]

      Hong E J, Choi D G, Shim M S. Acta Pharm Sin B, 2016, 6:297-307

    16. [16]

      He C, Liu D, Lin W. ACS Nano, 2015, 9: 991-1003

    17. [17]

      Gu B, Wu W, Xu G, Feng G, Yin F, Chong P H J, Qu J, Yong K T, Liu B.Adv Mater, 2017, 29: 1701076

    18. [18]

      Yue Z G,Wei W, Lv P P, Yue H, Wang L Y, Su Z G, Ma G H. Biomacromolecules, 2011, 12: 2440-2446

    19. [19]

      Yoo H S, Lee J E, Chung H, Kwon I C, Jeong S Y. J Control Release, 2005, 103: 235-243

    20. [20]

      Cho H, Li L, Bae Y H, Huh K M, Kang H C. Macromol Biosci, 2014, 14: 1483-1494

    21. [21]

      Battogtokh G, Ko Y T. J Mater Chem B, 2015,3: 9349-9359

    22. [22]

      Zhao J, Yang Y, Han X, Liang C, Liu J, Song X, Ge Z, Liu Z. ACS Appl Mater Interface, 2017, 9:23555-23563

    23. [23]

      Lin C W, Lu K Y, Wang S Y, Sung H W, Mi F L.Acta Biomater, 2016, 35: 280-292

    24. [24]

      Chiang Y T, Yen Y W, Lo C L. Biomaterials, 2015, 61:150-161

    25. [25]

      Klein P M, Reinhard S, Lee D J, Mueller K, Ponader D, Hartmann L, Wagner E. Nanoscale, 2016, 8:18098-18104

    26. [26]

    27. [27]

      Zhang C, Shi G, Zhang J, Song H, Niu J, Shi S, Huang P, Wang Y, Wang W, Li C, Kong D. J Control Release, 2017, 256: 170-181

    28. [28]

      Zhang C, Wang W, Liu T, Wu Y, Guo H, Wang P, Tian Q, Wang Y, Yuan Z. Biomaterials, 2012, 33:2187-2196

    29. [29]

      Guo H, Lai Q Y, Wang W, Wu Y K, Zhang C N, Liu Y, Yuan Z. Int J Pharmaceut, 2013, 451:1-11

    30. [30]

      Park J H, Kwon S, Lee M, Chung H, Kim J H, Kim Y S, Park R W, Kim I S, Seo S B, Kwon I C, Jeong S Y. Biomaterials, 2006, 27: 119-126

    31. [31]

      Son Y J, Jang J S, Cho Y W, Chung H, Park R W, Kwon I C, Kim I S, Park J Y, Seo S B, Park C R, Jeong S Y. J Control Release, 2003, 91:135-145

    32. [32]

      Li L, Gao F P, Tang H B, Bai Y G, Li R F, Li X M, Liu L R, Wang Y S, Zhang Q Q. Nanotechnology, 2010, 21: 265601

    33. [33]

      Zhang C. Shi G, Zhang J, Niu J, Huang P, Wang Z, Wang Y, Wang W, Li C, Kong D. Nanoscale, 2017, 9: 3304-3314

    34. [34]

      Nasongkla N, Shuai X, Ai H, Weinberg B D, Pink J, Boothman D A, Gao J M. Angew ChemInt Ed, 2004, 43: 6323-6327

    35. [35]

      Ma H L, Qi X T, Maitani Y, Nagai T. Int J Pharmaceut, 2007, 333: 177-186

    36. [36]

      Zhang C, Zhang J, Shi G, Song H, Shi S, Zhang X, Huang P, Wang Z, Wang W, Wang C, Kong D, Li C. Mol Pharmaceut, 2017, 14: 1760-1770

    37. [37]

      Li L, Cho H, Kim S, Kang H C, Huh K M. Carbohydr Polym, 2015, 121: 122-131

    38. [38]

      Shi J, Chen Z, Wang L, Wang B, Xu L, Hou L, Zhang Z. Acta Biomater, 2016, 29: 282-297

    39. [39]

      Liu Z, Zhan X, Yang M, Yang Q, Xu X, Lan F, Wu Y, Gu Z. Nanoscale, 2016, 8: 7544-7555

    40. [40]

      Xu Q, Liu Y, Su S, Li W, Chen C, Wu Y. Biomaterials, 2012, 33: 1627-1639

    41. [41]

      Wang Y, Meng Y, Wang S, Li C, Shi W, Chen J, Wang J, Huang R. Small, 2015, 11: 3575-3581

  • 加载中
    1. [1]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    2. [2]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    5. [5]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    6. [6]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    7. [7]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    8. [8]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    9. [9]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    10. [10]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    11. [11]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    12. [12]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    13. [13]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    16. [16]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    17. [17]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    18. [18]

      Hongling Liu Yue Xia Guang Xu Yafei Yang Chunhua Qu . Bitter Cold Medicine, Good for Healing. University Chemistry, 2025, 40(3): 328-332. doi: 10.12461/PKU.DXHX202405039

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(0)
  • Abstract views(98)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return