Citation: Zi-yu Wang, Wen-wen He, Yun-long Xu, Wei Huang, Wei Jiang, Hong Li, Quan-xing Zhang. Controlled Synthesis of PLA-series Environment-friendly Polymers with Guanidine Catalysts[J]. Acta Polymerica Sinica, ;2018, 0(7): 786-796. doi: 10.11777/j.issn1000-3304.2018.18036 shu

Controlled Synthesis of PLA-series Environment-friendly Polymers with Guanidine Catalysts

  • Corresponding author: Hong Li, hongli@nankai.edu.cn
  • Received Date: 1 February 2018
    Revised Date: 5 April 2018
    Available Online: 3 May 2018

  • Controlled polymerization is of great significance for the tailoring of macromolecular structure and synthesis of polymers with excellent properties. Several non-toxic organic guanidinines were prepared/selected in our laboratory in recent years and used as the catalysts/initiators to realize controlled melt polycondensation (MP), ring-opening polymerization (ROP), and depolymerization (DEP). Isotactic melt polycondensation (Iso-MP) of L-lactic acid/D-lactic acid (LLa/DLa) was carried out for the first time with biogenic creatinine (CR) catalyst and poly(L-lactic acid)/poly(D-lactic acid) (PLLA/PDLA) with high isotacticity (Iso. > 98%) was obtained; Combined MP with solid-state polycondensation (MP-SSP) of the medium molecular weight PLLA/PDLA ( Mw = 2.2 × 104, Iso. = 98.2%), prepared by the Iso-MP with CR, was carried out, and high molecular weight PLLA/PDLA (Mw > 1.0 × 10 5) with high isotacticity (Iso. > 98%) was obtained. The initial decomposition temperature ( Td,i) of the synthesized PLLA reached up to 324.5 °C, which was 120 °C higher than that of PLLA synthesized by SnCl2·2H2O catalyst; Optical pure (e.e. 100%) L-lactide/D-lactide (OP-LLA/OP-DLA) were synthesized via Iso-MP and the subsequent depolymerization (DEP) of LMW-PLLA/LMW-PDLA (Mw = 8.0 × 102 – 9.0 × 10 2) with CR catalyst. The polymer residues (r-PLLA/r-PDLA), produced accompanying with the lactides formation, were reused as the raw material for LLA/DLA synthesis after being hydrolyzed. The total yield of OP-LLA/OP-DLA reached up to 98%; Several sterically hindered guanidine carboxylates (HBG·OAc, CRA, CRG, CRL, TBDA) were synthesized and used to realize living ROP of LLA. An optical pure morpholine-2,5-dione (3S,6S-BMMD), derived from LLa and L-serine, was synthesized. Living ROP of 3S,6S-BMMD was carried out with CRA catalyst for the first time. After debenzylation of the synthesized P(3S,6S-BMMD), an amphiphillic copolymer P(LLa-co-Ser) was obtained, which is a useful support material in biomedical areas. The fine molecular structures and isotacticities of growing polymeric species were characterized by in situ monitoring with 1H-NMR, 13C-NMR. And the mechanisms of the above mentioned controlled polymerizations were proposed.
  • 加载中
    1. [1]

    2. [2]

      Auras R, Lim L T, Selke S E M, Tsuji H, eds. Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications. Hoboken, New Jersey: John Wiley & Sons, Inc. 2010. 499

    3. [3]

      Jhurry D, Bhaw-Luximon A, Spassky N. Macromol Symp, 2001, 175: 67-79

    4. [4]

      Chamberlain B M, Cheng M, Moore D R, Ovitt T M, Lobkovsky E B, Coates G W. J Am Chem Soc, 2001, 123(14): 3229-3238

    5. [5]

      Zhong Z, Dijkstra P J, Feijen J. J Am Chem Soc, 2003, 125(37): 11291-11298

    6. [6]

      O'Keefe B J, Hillmyer M A, Tolman W B. J Chem Soc, Dalton Trans, 2001, 15): 2215-2224

    7. [7]

      Doherty S, Errington R J, Housley N, Clegg W. Organometallics, 2004, 23(10): 2382-2388

    8. [8]

      Ovitt T M, Coates G W. J Am Chem Soc, 2002, 124(7): 1316-1326

    9. [9]

      Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Chem Rev, 2004, 104(12): 6147-6176

    10. [10]

      Sun J, Shi W, Chen D, Liang C. J Appl Polym Sci, 2002, 86(13): 3312-3315

    11. [11]

      Kricheldorf H R, Hachmann-Thiessen H, Schwarz G. Biomacromolecules, 2004, 5(2): 492-496

    12. [12]

      Kricheldorf H R. Chemosphere, 2001, 43(1): 49-54

    13. [13]

      Kricheldorf H R, Rost S. Polymer, 2005, 46(10): 3248-3256

    14. [14]

      Mazarro R, de Lucas A, Gracia I, Rodriguez J F. J Biomed Mater Res, Part B, 2008, 85B(1): 196-203

    15. [15]

      Tanzi M C, Verderio P, Lampugnani M G, Resnati M, Dejana E, Sturani E. J Mater Sci: Mater Med, 1994, 5(6): 393-396

    16. [16]

      Kim K W, Woo S I. Macromol Chem Phys, 2002, 203(15): 2245-2250

    17. [17]

      Moon S I, Lee C W, Miyamoto M, Kimura Y. J Polym Sci, Pol Chem, 2000, 38(9): 1673-1679

    18. [18]

      Jiang W, Huang W, Cheng N, Qi Y, Zong X, Li H, Zhang Q. Polymer, 2012, 53(24): 5476-5479

    19. [19]

      Gros P, Le Perchec P, Senet J P. J Org Chem, 1994, 59(17): 4925-4930

    20. [20]

      Moon S I, Lee C W, Taniguchi I, Miyamoto M, Kimura Y. Polymer, 2001, 42(11): 5059-5062

    21. [21]

      Huang W, Cheng N, Qi Y, Zhang T, Jiang W, Li H, Zhang Q. Polymer, 2014, 55(6): 1491-1496

    22. [22]

      Nishida H, Mori T, Hoshihara S, Fan Y, Shirai Y, Endo T. Polym Degrad Stab, 2003, 81(3): 515-523

    23. [23]

      Dantas F J S, Moraes M O, Mattos J C P d, Bezerra R J A C, Carvalho E F, Filho M B, Araújo A C d. Toxicol Lett, 1999, 110(3): 129-136

    24. [24]

      Dantas F J S, Mattos J C P d, Moraes M O, Viana M E, Lage C A S, Cabral-Neto J B, Leitão A C,Bernardo-Filho M, Bezerra R J A C, Carvalho J J, Caldeira-de-Araújo A. Food Chem Toxicol, 2002, 40(10): 1493-1498

    25. [25]

      Guedes A P, Cardoso V N, De Mattos J C, Dantas F J, Matos V C, Silva J C, Bezerra R J, Caldeira-de-Araujo A. Nucl Med Biol, 2006, 33(7): 915-921

    26. [26]

      Huang W, Qi Y, Cheng N, Zong X, Zhang T, Jiang W, Li H, Zhang Q. Polym Degrad Stab, 2014, 101:18-23

    27. [27]

    28. [28]

      Wang C, Li H, Zhao X. Biomaterials, 2004, 25(27): 5797-5801

    29. [29]

      Li H, Wang C, Jin Y, Zhao X, Feng B. J Polym Sci, Part A: Polym Chem, 2004, 42(15): 3775-3781

    30. [30]

    31. [31]

      Li H, Zhang S, Jiao J, Jiao Z, Kong L, Xu J, Li J, Zuo J, Zhao X. Biomacromolecules, 2009, 10(5): 1311-1314

    32. [32]

    33. [33]

      Barrera D A, Zylstra E, Lansbury P T, Langer R. Macromolecules, 1995, 28(2): 425-432

    34. [34]

      Feng Y, Klee D, Keul H, Hocker H. Macromol Chem Phys, 2000, 201(18): 2670-2675

    35. [35]

      Wang D, Feng X D. Macromolecules, 1997, 30(19): 5688-5692

    36. [36]

      Chisholm M H, Galucci J, Krempner C, Wiggenhorn C. Dalton Trans, 2006, 0: 846-851

    37. [37]

      Barrera D A, Zylstra E, Lansbury P T, Langer R. Macromolecules, 1995, 28(2): 425-432

    38. [38]

      Pang Z, Li H, He P, Wang Y, Ren H, Wang H, Zhu X X. J Polym Sci, Part A: Polym Chem, 2012, 50(19): 4004-4009

    39. [39]

      Lohmeijer B G G, Pratt R C, Leibfarth F, Logan J W, Long D A, Dove A P, Nederberg F, Choi J, Wade C, Waymouth R M, Hedrick J L. Macromolecules, 2006, 39(25): 8574-8583

    40. [40]

      Martello M T, Burns A, Hillmyer M. ACS Macro Lett, 2012, 1(1): 131-135

    41. [41]

    42. [42]

      Nederberg F, Connor E F, Moller M, Glauser T, Hedrick J L. Angew Chem Int Ed, 2001, 40(14): 2712-2715

    43. [43]

      Dove A P, Pratt R C, Lohmeijer B G G, Waymouth R M, Hedrick J L. J Am Chem Soc, 2005, 127(40): 13798-13799

    44. [44]

      Coulembier O, Mespouille L, Hedrick J L, Waymouth R M, Dubois P. Macromolecules, 2006, 39(12):4001-4008

    45. [45]

      Connor E, Nyce G W, Myers M, Mock A, Hedrick J L. J Am Chem Soc, 2002, 124(6):914-915

    46. [46]

      Zhang L, Nederberg F, Messman J M, Pratt R C, Hedrick J L, Wade C G. J Am Chem Soc, 2007, 129(42):12610-12611

    47. [47]

      Coady D J, Engler A C, Horn H W, Bajjuri K M, Fukushima K, Jones G O, Nelson A, Rice J E, Hedrick J L. ACS Macro Lett, 2012, 1(1): 19-22

    48. [48]

      Coady D J, Fukushima K, Horn H W, Rice J E, Hedrick J L. Chem Commun, 2011, 47(11):3105-3107

    49. [49]

      Dove A P, Li H, Pratt R C, Lohmeijer B G G, Culkin D A, Waymouth R M, Hedrick J L. Chem Commun, 2006, 0(27): 2881-2883

    50. [50]

      Coulembier O, Lohmeijer B G G, Dove A P, Pratt R C, Mespouille L, Culkin D A, Benight S J, Dubois P, Waymouth R M, Hedrick J L. Macromolecules, 2006, 39(17):5617-5628

    51. [51]

      Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Chem Rev, 2004, 104(12): 6147-6176

    52. [52]

    53. [53]

    54. [54]

      Woo H G, Li H. Advanced Functional Materials. Berlin, Heidelberg: Springer, 2011. 227

  • 加载中
    1. [1]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    2. [2]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    3. [3]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    13. [13]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    17. [17]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    18. [18]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    19. [19]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    20. [20]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(0)
  • Abstract views(132)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return