Citation: Qi Zhang, Meng-juan Wei, Jin-rui Deng, Yi-xian Wu. Synthesis and Properties of Polytetrahydrofuran-b-Polydimethylsilane-b-Polytetrahydrofuran Triblock Copolymer[J]. Acta Polymerica Sinica, ;2018, 0(9): 1202-1211. doi: 10.11777/j.issn1000-3304.2018.18032 shu

Synthesis and Properties of Polytetrahydrofuran-b-Polydimethylsilane-b-Polytetrahydrofuran Triblock Copolymer

  • Corresponding author: Yi-xian Wu, wuyx@mail.buct.edu.cn
  • Received Date: 29 January 2018
    Revised Date: 21 February 2018
    Available Online: 3 May 2018

  • A series of polytetrahydrofuran (PTHF) and polydimethylsilane (PDMS) triblock copolymers (PTHF-b-PDMS-b-PTHF) have been synthesized via the combination of controlled termination of living PTHF chains (PTHF+) and ― NH2 functional groups along PDMS macromolecular backbone with the copolymerization efficiency of near 100%. PTHF living chains and PTHF+ were in situ prepared through living cationic opening polymerization of tetrahydrofuran (THF) with AllylBr/AgClO4 initiating system at 0 °C. The molecular weights of the PTHF chains were adjusted by mediating the molar ratio of the monomer to initiator. Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H-NMR) were used to characterize the microstructure of as-prepared triblock copolymers. Thermal properties of the triblock copolymers PTHF-b-PDMS-b-PTHF were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Additionally, polarization microscopy (POM) was employed to investigate the effect of number-average molecular weight (Mn,PTHF) of PTHF segments on the crystallization of the triblock copolymers. To have a further insight of the structures of the triblock copolymers, transmission electron microscopy (TEM) was also used to study their micromorphology. The antimicrobial activity of the material was characterized by determination of the E. coli inhibition zone. All characterization results aforementioned demonstrate that the well-defined triblock copolymers of PTHF-b-PDMS-b-PTHF with silver nanocomposites could be successfully prepared in situ with very high efficiency of ca. 95%. The crystallization of the triblock copolymers increased with increasing molecular weight of PTHF segments. Compared to the corresponding homopolymers of PTHF and PDMS, the thermal stability of the triblock copolymers was obviously improved. Moreover, the existence of amino groups (>N―H) in the macromolecular chains and a large number of ether bonds (―O―) from PTHF segments resulted in the formation of hydrogen bonds between the macro molecular chains of the triblock polymer, leading to the formation of physically cross-linked copolymer networks with more flexibility and better mechanical properties. Based on the strong hydrogen bonds, the obtained polymer networks show a pretty good self-healing performance at room temperature. The triblock copolymers were cut off at room temperature, then the cut section was self-healed for 24 h at room temperature, and the self-healed copolymers could be stretched to 1.5 times of the original length, which proved that the materials behaved good self-healing performance. Furthermore, the antimicrobial activity of the triblock copolymers was characterized by the inhibition zone method, and the diameter of inhibition zone of antibacterial was determined to be 13 mm, indicating a good antibacterial property. A novel nanocomposite, consisting of the triblock copolymer/silver, was synthesized in situ via controlled/living cationic ring-opening polymerization, and showed excellent properties resulted from PTHF, PDMS and Ag nano-particles, suggesting their potential applications in biological and medical fields.
  • 加载中
    1. [1]

      Ryu I, Kim Y, Jung Y, Lim J, Caroline A R, Son J. ACS Appl Mater Interfaces, 2017, 9: 17427 − 17434  doi: 10.1021/acsami.7b02910

    2. [2]

      David R, Michel P, Patrick N. Macromolecules, 1998, 31: 4301 − 4308  doi: 10.1021/ma971577c

    3. [3]

      Gabor E, Joseph P K. J Polym Sci, Part A: Polym Chem, 2005, 43: 4965 − 4971  doi: 10.1002/(ISSN)1099-0518

    4. [4]

      Prokopios G, Lo T, Ho R, Apostolos A. Polym Chem, 2017, 8: 843 − 850  doi: 10.1039/C6PY01768A

    5. [5]

      Jennifer M L, Leslie R B, Anthony K C C, John L B. J Biomater Sci, Polym Ed, 2014, 25: 786 − 801  doi: 10.1080/09205063.2014.907669

    6. [6]

      Zhang D D, Ruan Y B, Zhang B Q, Qiao X, Deng G H, Chen Y M, Liu C Y. Polymer, 2017, 120(30): 189 − 196

    7. [7]

      Ibarboure E, Papon E, Rodríguez H J. Polymer, 2007, 48: 3717 − 3725  doi: 10.1016/j.polymer.2007.04.046

    8. [8]

      Melissa A, Sherman, Joseph P. J Polym Sci, Part A: Polym Chem, 1998, 36: 1891 − 1899  doi: 10.1002/(ISSN)1099-0518

    9. [9]

      Chang C, Choi D, Kim W, James W Y, Lane V C, Kim Y, Kim S. J Control Release, 2007, 118: 245 − 253  doi: 10.1016/j.jconrel.2006.11.025

    10. [10]

      Juliane U, Rainer J, Robert L. Biomaterials, 2014, 35: 4848 − 4861  doi: 10.1016/j.biomaterials.2014.02.029

    11. [11]

      Zhu M, Xiang L, Yang K, Shen L, Long F, Fan J, Yi H, Xiang J, Matthew P A. J Polym Res, 2012, 19: 9808 − 9818  doi: 10.1007/s10965-011-9808-y

    12. [12]

      Bazoly R, Bruno P, Thomas H, Véronique B, Philippe G. Eur Polym J, 2017, 88: 689 − 700  doi: 10.1016/j.eurpolymj.2016.09.042

    13. [13]

      Mi H, Jing X, Brett N N, Breanna S H, Chen G, Turng L. J Mater Chem B, 2017, 5: 4137 − 4151  doi: 10.1039/C7TB00419B

    14. [14]

      Deng W, Lei Y, Zhou S, Zhang A, Lin Y. RSC Adv, 2016, 6: 51694 − 51702  doi: 10.1039/C6RA07146E

    15. [15]

      Cheradame H, Sassatelli M, Pomel C, Sanh A, Gau-Racine J, Bacri L, Auvray L, Guegan P. Macromol Symp, 2008, 261: 167 − 181  doi: 10.1002/(ISSN)1521-3900

    16. [16]

      Hourston D J, Williams G D, Santguru R, Padget J C, Pears D. J Appl Polym Sci, 1999, 74: 556 − 566  doi: 10.1002/(ISSN)1097-4628

    17. [17]

      Wei X, Ying Y, Yu X. J Appl Polym Sci, 1988, 70: 1621 − 1626

    18. [18]

      Guo A R, Yang F, Yu R, Wu Y X. Chinese J Polym Sci, 2015, 33(1): 23 − 35  doi: 10.1007/s10118-015-1571-9

    19. [19]

      Guo A R, Yang W X, Yang F, Yu R, Wu Y X. Macromolecules, 2014, 47: 5450 − 5461  doi: 10.1021/ma501060y

    20. [20]

    21. [21]

    22. [22]

    23. [23]

      Mu C, Fan X, Tian W, Bai Y, Yang Z, Fan W, Chen H. Polym Chem, 2012, 3: 3330 − 3339  doi: 10.1039/c2py20586f

    24. [24]

      Li Y, Bai T W, Li Y F, Ling J. Macromol Chem Phys, 2017, 218(3): 1600450  doi: 10.1002/macp.v218.3

    25. [25]

      Pittsa K L, Abu-Mallouhb S, Fenecha M. J Mech Behav Biomed, 2013, 17: 333 − 336  doi: 10.1016/j.jmbbm.2012.07.007

    26. [26]

      Murielle B, Sophie C, Odile F, Françoise P, Dominique T. Langmiur, 2010, 26(22): 17427 − 17434  doi: 10.1021/la102384s

    27. [27]

      Li G F, Wu J, Wang B, Yan S F, Zhang K X, Ding J X, Yin J B. Biomacromolecules, 2015, 16: 3508 − 3518  doi: 10.1021/acs.biomac.5b01287

  • 加载中
    1. [1]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    2. [2]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    3. [3]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    4. [4]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    5. [5]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    8. [8]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    9. [9]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    10. [10]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    11. [11]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    12. [12]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    13. [13]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    14. [14]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    15. [15]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    16. [16]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

Metrics
  • PDF Downloads(0)
  • Abstract views(165)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return