Citation: Dan Wang, Li-jie Luo, Gao-long Wu, Bin Liu, Yong-jun Chen, Xin-lin Yang. Preparation and Charecterization of Charged Hollow Double-layer Polyelectrolyte Microspheres[J]. Acta Polymerica Sinica, ;2018, 0(7): 900-908. doi: 10.11777/j.issn1000-3304.2018.18028 shu

Preparation and Charecterization of Charged Hollow Double-layer Polyelectrolyte Microspheres

  • Corresponding author: Xin-lin Yang, xlyang88@nankai.edu.cn
  • Received Date: 24 January 2018
    Revised Date: 28 March 2018
    Available Online: 22 May 2018

  • Monodisperse tetra-layer hybrid microspheres, the types of SiO2/anionic polymer/SiO2/anionic polymer and SiO2/anionic polymer/SiO2/cationic polymer, were prepared by a four-step synthetic procedure. The hollow double-shelled electrolyte microspheres, with either anionic species (−41.43 ~ −54.65 mV) on both shells or zwitterionic structures on the inner and outer shells, were prepared via combination of distillation precipitation polymerization and sol-gel method for the preparation of the tetra-layer inorganic/polymer hybrid microspheres together with the subsequently selective removal of silica core and sandwiched layer. In such a process, the modified Stöber sol-gel technique was utilized for synthesis of silica inner core and the sandwiched third layer for these tetra-layer inorganic/polymer hybrid microspheres. The P(EGDMA-co-MAA) and P(DVB-co-St) polymeric layers were synthesized via the radical capture of EGDMA/MAA and DVB/St comonomers as well as their co-oligomers from the vinyl groups as the reactive sites with presence of the 3-(methacryloxy)propyl trimethoxysilane (MPS) silica nanoparticles as the seeds during the distillation precipitation polymerization. The outer P(DVB-co-StMPPy+Cl) shell was further developed by a surface pyridinium reaction between the chloromethyl group on the surface of polymer network and the pyridine via suspension of SiO2/P(EGDMA-co-MAA)/SiO2/P(DVB-co-St) tetra-layer microspheres with various DVB crosslinking degrees (30 vol%, 50 vol% and 60 vol%) in pyridine. Transmission electron microscopy (TEM), Fourier transfer infrared spectra (FTIR) and zeta potential were systematically used for characterization of the morphology, chemical components and surface charges of these hollow double-layer polyelectrolyte microspheres. The resultant multi-layer inorganic silica/polymer multi-layer hybrid microspheres had smooth surface with regular shape with efficient interaction between the polymer layer and the inorganic species. The shape of the polymeric shells were deformed in the hollow polyelectrolyte microspheres due to shrinkage and collapse of the shells when they were slightly crosslinked. The thicknesses (12 − 59 nm) and zeta-potentials (8.82 − 39.82 mV) of the polymeric shell-layer can be facilely adjusted by changing the amount of DVB crosslinker in the comonomers (0.30 − 0.60) in the synthesis. The hollow double polymer electrolyte microspheres have great potential for applications as the active components in the field of methanol fuel cell for water reservoirs with high proton conductivity due to its huge cavities and zwitter-ionic channels for electron conductivity.
  • 加载中
    1. [1]

      Li G L, Lei C L, Wang C H, Neoh K G, Kang E T, Yang X L. Macromolecules, 2008, 41: 9487-9490

    2. [2]

      Dai Z F, Dahne L, Mohwald H, Tiersch B. Angew Chem Int Ed, 2002, 41: 4019-4022

    3. [3]

      Dai Z F, Mohwald H, Tiersch B, Dahne L. Langmuir, 2002, 18: 9553-9538

    4. [4]

      Kreft O, Prevot M, Mohwald H, Sukhorukov G B. Angew Chem Int Ed, 2007, 46: 5605-5608

    5. [5]

      Wang H, Liu S Y, Lv X J, Ma R, Zhang Z Q. Anal Methods, 2015, 7: 4939-4946.

    6. [6]

      Pek Y S, Pitukmanorom P, Ying J Y. J Mater Chem B, 2014, 2: 8194-8200

    7. [7]

      Hu W T, Liu B C, Wang Q, Liu Y, Liu Y X, Jing P, Yu S L, Liu L X, Zhang J. Chem Commun, 2013, 49: 7596-7598

    8. [8]

      Ioppolo T, Ayaz U K, Otugen M V. J Appl Phys, 2009, 105: 013535

    9. [9]

      Dai C, Tian X K, Nie Y L, Tian C, Yang C, Zhou Z X, Li Y, Gao X Y. Chem Eng J, 2017, 321: 105-112

    10. [10]

      Kaverlavani S K, Moosavifard S E, Bakouei A. Chem Commun, 2017, 53: 1052-1055.

    11. [11]

      Li H, Bian Z, Zhu J, Zhang D, Li G, Huo Y, Lu Y. J Am Chem Soc, 2007, 129: 8406-8407

    12. [12]

      Paradiso P, Colaco R, Mata J L G, Krastev R, Saramago B, Serro A P. J Biomed Mater Res B, 2017, 105: 1799-1807

    13. [13]

      Ding I, Shendi D M, Rolle M W, Peterson A M. Langmuir, 2018, 34: 1178-1189

    14. [14]

      Al-Awady M J, Fauchet A, Greenway G M, Paunov V N. J Mater Chem B, 2017, 5: 7885-7897

    15. [15]

      Dani A, Tauber K, Zhang W Y, Schlaad H, Yuan J Y. Macromol Rapid Commun, 2017, 38: 1700167.

    16. [16]

      Shen P, Zhang H T, Liu H, Xin J Y, Fei L F, Luo X G, Ma R Z, Zhang S J. J Mater Chem A, 2015, 3: 3456-3463

    17. [17]

      Pedersen B P, Buch-Pederson M J, Morth J P, Palmgren M G, Nissen P. Nature, 2007, 450: 1111-U19

    18. [18]

      Zhang H, Shen P K, Chem Rev, 2012, 112: 2780-2832

    19. [19]

      Ariga K, Lvov Y, Kunitake T, J Am Chem Soc, 1997, 119: 2224-2231

    20. [20]

      Sukhorukov G B, Donath, E, Lichtenfeld H, Knippel E, Knippel M, Budde A, Mowhald H. Colloid Surface A, 1998, 137: 253-266

    21. [21]

      He G W, Li Z Y, Li Y F, Li Z, Wu H, Yang X L, Jiang Z Y. ACS Appl Mater Interfaces 2014, 6: 5362-5366

    22. [22]

      Mu B, Lu C Y, Liu P. Colloid Surface B, 2011, 82: 385-390

    23. [23]

      Yang M, Ma J, Zhang C L, Yang Z Z, Lu Y F. Angew Chem Int Ed, 2005, 44: 6727-6730

    24. [24]

      Wei W, Zhang C L, Ding S J, Qu X Z, Liu J G, Yang Z Z. Colloid Polym Sci, 2008, 286: 881-888

    25. [25]

      Lou X W, Deng D, Lee J Y, Archer L A. Chem Mater 2008, 20: 6562-6566

    26. [26]

      Lou XW, Archer L A, Yang Z C. Adv Mater 2008, 20: 3987-4019

    27. [27]

      Zhao, Y, L. Jiang. Adv Mater, 2009, 21: 3621-3638

    28. [28]

      Ma J W, Wu Y S, Zeng Y, Li Y, Wu D C. J Mater Chem A, 2015, 3: 16762-16773

    29. [29]

      Ji M, Liu H L, Yang X L. Polym Chem, 2011, 2: 148-156

    30. [30]

      Liu G Y, Zhang H, Yang X L, Wang Y M. Polymer, 2007, 20: 5896-5904

    31. [31]

      Li G L, Neoh K G, Kang E T, Yang X L. Chem Mater, 2010, 22: 1309-1317

    32. [32]

      Ji H F, Wang S P, Yang X L, Polymer, 2009, 50: 133-140

  • 加载中
    1. [1]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    2. [2]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    3. [3]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    4. [4]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    5. [5]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    6. [6]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    7. [7]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    8. [8]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    9. [9]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    12. [12]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    15. [15]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    16. [16]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    19. [19]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(0)
  • Abstract views(126)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return