Citation: Qian Zhang, Zhi Yuan. Study of Aβ Aggregation Inhibitors Based on Multiple Weak Interactions[J]. Acta Polymerica Sinica, ;2018, 0(7): 776-785. doi: 10.11777/j.issn1000-3304.2018.18025 shu

Study of Aβ Aggregation Inhibitors Based on Multiple Weak Interactions

  • Corresponding author: Zhi Yuan, zhiy@nankai.edu.cn
  • Received Date: 21 January 2018
    Revised Date: 17 April 2018

  • Alzheimer’s disease (AD) is a neurodegenerative disorder associated with the loss of memory, cognitive decline, and behavioral disability, leading to dementia and death ultimately. The pathogenesis of AD is still unclear, but it is generally accepted that the occurrence of AD is related to the accumulation of amyloid β (Aβ) in the brain and the oxidative stress effect caused by the enrichment of metal ions. In our previous work, we expanded the targeting site from Aβ16-22 to Aβ11-23 (EVHHQKLVFFAED), which could offer multiple weak interaction sites, such as the electrostatic, hydrophobic interactions and hydrogen bonding. We designed and screened a novel Aβ aggregation inhibitory peptide (RR) by computer simulation. The tripeptide chelator GGH, selected by ITC experiment with selectively Cu ion chelating ability, was introduced into RR to get the bifunctional peptide inhibitor GR, which have the ability to inhibit Aβ aggregation and produce the oxygen species (ROS) production at the same time. The results of ThT fluorescence, turbidity analysis, MTT methods showed that GR can inhibit the aggregation of Aβ and Aβ-Cu complex (Aβ:Cu = 1:0.25) to form amorphous aggregates, and the cell survival of GR group can reach 88%, significantly higher than chelator GGH (49%) and single functional inhibitor RR (68%). Moreover, it is proposed for the first time that the endocytosis of Aβ aggregates in the brain could be promoted by the disaggregation of Aβ or Aβ-Cu complex fibrils to achieve the effect of treating AD. The results showed that RR and GR can disaggregate Aβ and Aβ-Cu complex fibrils to nanorod-like structure with a length of 200 − 250 nm (rA β), and β-sheet structure content in the system was reduced by 45%. rAβ more easily to PC12 cell endocytosis, and it can enter the cells and further into the cell lysosomes. The in vitro lysosomal cathepsin B (CatB) degradation experimental results showed that, compared to fAβ, rAβ is more susceptible to CatB degradation, and its degradation products have no longer full hydrophobic core region, thereby greatly reducing their chances of re-aggregation. Finally the feasibility of GR and RR has been verified in Morris water maze test.
  • 加载中
    1. [1]

      Lorenzo A, Yankner B A. Proc Nat Acad Sci USA, 1994, 91(25): 12243-12247

    2. [2]

      Kayed R, Head E, Thompson J L, McIntire T M, Milton S C, Cotman C W, Glabe C G. Science, 2003, 300(5618): 486-489

    3. [3]

      Keliényi G J. Histochem Cytochem, 1967, 15(3): 172-180

    4. [4]

      Vasser P, Culling C. Arch Pathol, 1959, 68: 487-498

    5. [5]

      Ono K, Hasegawa K, Naiki H, Yamada M. J Neurosci Res, 2004, 75(6): 742-750

    6. [6]

      Yang F, Lim G P, Begum A N, Ubeda O J, Simmons M R, Ambegaokar S S, Chen P P, Kayed R, Glabe C G, Frautschy S A, Cole G M. J Biol Chem, 2005, 280(7):5892-5901

    7. [7]

      Ehrnhoefer D E, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker E E, Nat Struct Mol Biol, 2008, 15(6): 558-566

    8. [8]

      Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, Schubert D, Riek R, Proc Nat Acad Sci UAS, 2005, 102(48): 17342-17347

    9. [9]

      Tjernberg L O, Näslund J, Lindqvist F, Johansson J, Karlström A R, Thyberg J, Terenius L, Nordsteddt C, J Biol Chem, 1996, 271(15): 8545-8548

    10. [10]

      Soto C, Sigurdsson E M, Morelli L, Kumar R A, Castaño E M, Frangione B. Nat Med, 1998, 4(7): 822-826

    11. [11]

      Hetényi C, Szabó Z, Klement É, Datki Z, Körtvélyesi T, Zarándi M, Penke B. Biochem Biophys Res Commun, 2002, 292(4): 931-936

    12. [12]

      Kogan M J, Bastus N G, Amigo R, Grillo-Bosch D, Araya E, Turiel A, Labarta A, Puntes V F. Nano Lett, 2006, 6(1): 110-115

    13. [13]

      Viet M H, Ngo S T, Lam N S, Li M S. J Phys Chem B, 2011, 115(22): 7433-7446

    14. [14]

      Liu J, Wang W, Zhang Q, Zhang S, Yuan Z. Biomacromolecules, 2014, 15(3): 931-939

    15. [15]

      Liu J, Yuan Z. Chinese J Polym Sci, 2015, 33(7): 1009-1017

    16. [16]

      Levine H. Protein Sci, 1993, 2(3): 404-410

    17. [17]

      Necula M, Kayed R, Milton S, Glabe C G. J Biol Chem, 2007, 282(14): 10311-10324

    18. [18]

      Kepp K P. Chem Rev, 2012, 112(10): 5193-5239

    19. [19]

      Faller P, Hureau C, Berthoumieu O. Inorg Chem, 2013, 52(21): 12193-12206

    20. [20]

      Hureau C. Coord Chem Rev, 2012, 256(19-20): 2164-2174

    21. [21]

      Bush A I. Neurobio Ag, 2002, 23(1031-1038

    22. [22]

      Adlard P A, Cherny R A, Finkelstein D I, Gautier E, Robb E, Cortes M, Volitakis I, Liu X, Smith J P, Perez K, Laughton K, Li Q X, Charman S A, Nicolazzo J A, Wilkins S, Deleva K, Lynch T, Kok G, Ritchie C W, Tanzi R E, Cappai R, Masters C L, Barnham K J, Bush A I. Neuron, 2008, 59(1): 43-55

    23. [23]

      Geng J, Li M, Wu L, Chen C, Qu X. Adv Healthcare Mater, 2012, 1(3): 332-336

    24. [24]

      Li M, Xu C, Ren J, Wang E, Qu X. Chem Commun, 2013, 49(97): 11394-11396

    25. [25]

      Jensen M, Canning A, Chiha S, Bouquerel P, Pedersen J T, Jesper Østergaard, Olivier Cuvillier, Sasaki S, Hureau C, Faller P. Chem Eur J, 2012, 18(16): 4836-4839

    26. [26]

      Zhang Q, Hu X, Wang W, Yuan Z. Biomacromolecules, 2016, 17(2): 661-668

    27. [27]

      Hu X, Zhang Q, Wang W, Yuan Z, Zhu X, Chen B, Chen X. ACS Chem Neurosci, 2016, 7(9): 1255-1263

    28. [28]

      Bateman R J, Munsell L Y, Morris J C, Swarm R, Yarasheski K E, Holtzman D M. Nat Med, 2006, 12(7): 856-861

    29. [29]

      Mawuenyega K G, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris J C, Yarasheski K E, Bateman R J. Science, 2010, 330(6012): 1774

    30. [30]

      Zhang Q, Liu J, Hu X, Wang W, Yuan Z. ACS Macro Lett, 2015, 4(4): 339-342

    31. [31]

      Wang D, Zhang Q, Hu X, Wang W, Zhu X, Yuan Z. Acta Biomaterialia, 2018, 65: 327-338

    32. [32]

      Morris R G M, Garrud P, Rawlins J N P, O’Keefe J. Nature, 1982, 297(5868): 681-683

    33. [33]

      Song Q, Huang M, Yao L, Wang X, Gu X, Chen J, Chen J, Huang J, Hu Q, Kang T. ACS Nano, 2014, 8(3): 2345-2359

  • 加载中
    1. [1]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    2. [2]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    3. [3]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    5. [5]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    6. [6]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    7. [7]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    8. [8]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

Metrics
  • PDF Downloads(0)
  • Abstract views(117)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return