Citation: Zhi-feng Cai, Qing-yin Wang, Shao-ying Liu, Gong-ying Wang. Study of KF/Al2O3 Catalyst in Synthesis of Poly(ethylene terephthalate) by Esterification[J]. Acta Polymerica Sinica, ;2018, 0(9): 1184-1193. doi: 10.11777/j.issn1000-3304.2018.18014 shu

Study of KF/Al2O3 Catalyst in Synthesis of Poly(ethylene terephthalate) by Esterification

  • Corresponding author: Shao-ying Liu, syliu@cioc.ac.cn Gong-ying Wang, gywang@cioc.ac.cn
  • Received Date: 15 January 2018
    Revised Date: 8 March 2018
    Available Online: 11 July 2018

  • A series of KF/Al2O3 solid base catalysts were prepared by a wet impregnation method and applied to the synthesis of poly(ethylene terephthalate) (PET) from 1,4-dicarboxybenzene and ethylene glycol. The effect of KF content and calcination temperature on the structure, active components and properties of the catalysts were investigated. The structure of KF/Al2O3 catalysts was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET. The basic strength and basicity of KF/Al2O3 catalysts were measured by Hammett indicator. The relationship between KF content, calcination temperature and the structure, basic strength and basicity of KF/Al2O3 catalyst was investigated. The relationship between the structure, basic strength and basicity of KF/Al2O3 catalysts and the catalytic activity in PET synthesis was also studied. The results showed that KF/Al2O3 catalysts could be used to synthesize high-molecular-weight PET. It was found that several types of basic centers such as K3AlF6, KAlO2, K2O and K2CO3 existed in the catalyst. The specific surface area of KF/Al2O3 was reduced with increasing KF content. The particle size of KF/Al2O3 increased with increasing KF content. The basic strength and basicity of KF/Al2O3 increased with increasing KF content and calcination temperature. The activity of KF/Al2O3 was related to the basic strength and basicity and was not really influenced by the specific surface area and particle size. Medium strength basic sites were responsible for the higher intrinsic viscosity, and strong basic sites could cause decomposition of the obtained polymer. Strong basic sites were mainly due to potassium carbonate, potassium aluminate and potassium oxide. The catalytic effect of 25-KF/Al2O3-400 was better than that of Sb2O3. It contained γ-Al2O3, K3AlF6 and a small amount of K2CO3. It had moderate basic strength, basicity and high activity. Based on the obtained results, the possible active site was K3AlF6. The intrinsic viscosity of 1.07 dL/g, with carboxyl end group content of 20.29 mol/t, DEG content of 2.85%, L value of 86.6 and b value of 4.6, was obtained with 0.1 wt% of catalyst concentration.
  • 加载中
    1. [1]

    2. [2]

      Ni L L, Xin J Y, Dong H X, Liu X M, Liu X M, Zhang S J. ChemSusChem, 2017, 10: 2394 − 2401

    3. [3]

    4. [4]

      Aharoni S M. Polym Eng Sci, 1998, (38): 1039 − 1047

    5. [5]

      He M C, Yang J R. Sci Total Environ, 1999, 234(9): 149 − 155

    6. [6]

      McClelland E, Harrogate. US patent, C08g, 3965071.1976-06-22

    7. [7]

      Ronald A. Tershansy. US patent, C08g, 3907754.1975-09-23

    8. [8]

      Neidel U, Eckert T. Chem Fibers Int, 1999, 49: 27 − 29

    9. [9]

      Yin M, Li C C, Guan G H, Zhang D, Xiao Y N. J Appl Polym Sci, 2010, 115(4): 2470 − 2478

    10. [10]

    11. [11]

      Finelli L, Lorenzetti C, Messori M, Sisti L, Vannini M. J Appl Polym Sci, 2004, 92: 1887 − 1892

    12. [12]

    13. [13]

    14. [14]

      Lin Q H, GuY Q, Chen D J. J Appl Polym Sci, 2013, 129(5): 2571 − 2579

    15. [15]

      Xiao B, Wang L P, Mei R H, Wang G Y. Chinese Chem Lett, 2011, 22(6): 741 − 744

    16. [16]

    17. [17]

      Zheng X Y, Fan W M, Kong W P, Qi C. Kinet Catal, 2014, 55(5): 592 − 598

    18. [18]

      Shahraki H, Entezari M H, Goharshadi E K. Ultrason Sonochem, 2015, 23: 266 − 274

    19. [19]

      Xu B, Xiao G M, Cui L F, Wei R P, Gao L J. Energ Fuel, 2007, 21: 3109 − 3112

    20. [20]

      Feng Y X, Yin N, Li Q F, Wang J W, Kang M Q, Wang X K. Catal Lett, 2008, 121: 97 − 102

    21. [21]

      Serio M D, Tesser R, Ferrara A, Santacesaria E. J Mol Catal A-Chem, 2004, 212: 251 − 257

    22. [22]

      Yan S L, Kim M, Salley S O, Simon S K Y. Appl Catal A-Gen, 2009, 360: 163 − 170

    23. [23]

      Xie W L, Peng H, Chen L G. Appl Catal A-Gen, 2006, 300: 67 − 74

    24. [24]

      Xu C L, Sun J, Zhao B B, Liu Q. Appl Catal B-Environ, 2010, 99: 111 − 117

    25. [25]

      Qiu P, Yang B L, Yi C H, Qi S T. Catal Lett, 2010, 137: 232 − 238

    26. [26]

      Liu Z M, Wang J W, Kang M Q, Yin N, Wang X K, Tan Y S, Zhu Y L. J Braz Chem Soc, 2014, 25: 152 − 160

    27. [27]

      Liu Z M, Wang J W, Kang M Q, Yin N, Wang X K, Tan Y S, Zhu Y L. J Ind Eng Chem, 2015, 21: 394 − 399

    28. [28]

      Wang S, Hao P F, Li S X, Zhang A L, Guan Y Y, Zhang L N. Appl Catal A-Gen, 2017, 542: 174 − 181

    29. [29]

      Holland B J, Hay J N. Polymer, 2002, 43: 1835 − 1847

    30. [30]

      Holland B J, Hay J N. Polymer, 2002, 43: 1797 − 1804

    31. [31]

      Yang J H, Xia Z X, Kong F T, Ma X S. Polym Degrad Stab, 2010, 95: 53 − 58

    32. [32]

      Hovenkamp S G, Munting J P. J Polym Sci, Part B: Polym Chem, 1970, 8: 679 − 682

    33. [33]

      Wang Z Q, Yang X G, Li J G, Liu S Y, Wang G Y. J Mol Catal A-Chem, 2016, 424: 77 − 84

    34. [34]

      Jung J H, Moonhor R, Heesoo K. Catal Today, 2006, 115: 283 − 287

    35. [35]

      Dimitris N B, George P K. Polym Degrad Stab, 1999, 63: 213 − 218

    36. [36]

      Zimmerman H, Kim N T. Polym Eng Sci, 1980, 20: 680 − 683

  • 加载中
    1. [1]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    2. [2]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    3. [3]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    5. [5]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    6. [6]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    7. [7]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    8. [8]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    9. [9]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    10. [10]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    11. [11]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    14. [14]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    15. [15]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    16. [16]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    17. [17]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    20. [20]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

Metrics
  • PDF Downloads(0)
  • Abstract views(121)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return