Citation: Yun-xiao Huang, Hu-sheng Yan. Effect of Buffer Types and Their Concentrations on ζ Potentials of Positively Charged Nanoparticles[J]. Acta Polymerica Sinica, ;2018, 0(7): 893-899. doi: 10.11777/j.issn1000-3304.2018.18007 shu

Effect of Buffer Types and Their Concentrations on ζ Potentials of Positively Charged Nanoparticles

  • Corresponding author: Hu-sheng Yan, yanhs@nankai.edu.cn
  • Received Date: 8 January 2018
    Revised Date: 29 March 2018
    Available Online: 3 May 2018

  • The application of charged nanoparticles in drug delivery and imaging has been extensively investigated. The surface charge density of charged nanoparticles, which is usually characterized by ζ potentials, has a drastic effect on the interaction between the nanoparticles and the biological systems, and this interaction is critical for the in vivo biofate of the nanoparticles. However, the effect of different types of buffer systems and their concentrations on the ζ potentials is often ignored in literature. Various buffer systems, such as phosphate, Tris, Hepes and Mops, and different buffer concentrations from 1 mmol/L to 200 mmol/L, were used for measuring ζ potentials of nanoparticles. Herein the effect of buffer types and their concentrations on the ζ potentials for three different types of amine group-containing nanoparticles, i.e. poly(amido amine) (PAMAM) dendrimer, polystyrene-block-poly((N,N-diethylamino)ethyl methacrylate) (PS-b-PDMAEMA) micelles and chitosan nanoparticles, was studied. The ζ potentials of all the three types of nanoparticles decreased in the order of Tris, Hepes, Mops, and phosphates for buffer systems at the same concentration and pH. The ζ potentials were much lower in phosphate buffer than that in the others. The ζ potentials of amino group-containing chitosan nanoparticles showed even negative values in phosphate buffer with the concentration below ~ 10 mmol/L at pH = 7.4. The ζ potentials of all the three types of nanoparticles drastically decreased with the increase in buffer concentration (from 2 mmol/L to 100 mmol/L) for all the buffer systems investigated. The ζ potentials of chitosan nanoparticles in phosphate buffer (pH = 7.4) were reversed from positive to negative with the increase in phosphate concentration, with the crossover concentration of around 10 mmol/L. This charge reversal was contributed to the low protonation degree of chitosan amino groups (pKa = 6.3) at pH = 7.4, and the presence of trivalent phosphate anions, which should be strongly adsorbed onto the positively charged particle surfaces and subsequently shielded the positive charges. When NaCl was added in the buffers, the ζ potentials of all the three types of nanoparticles decreased with increasing concentrations of the salt.
  • 加载中
    1. [1]

      Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. J Control Release, 2015, 200: 138-157

    2. [2]

      Pearson R M, Hsu H J, Bugno J, Hong S. MRS Bull, 2014, 39: 227-237

    3. [3]

      Fleischer C C, Payne C K. Acc Chem Res, 2014, 47: 2651-2659

    4. [4]

      Duncan R. Nat Rev Cancer, 2006, 6: 688-701

    5. [5]

      Fröhlich E. Int J Nanomed, 2012, 7: 5577-5591

    6. [6]

      Park J, Nam J, Won N, Jin H, Jung S, Jung S, Cho S H, Kim S. Adv Funct Mater, 2011, 21: 1558-1566

    7. [7]

      Amoozgar Z, Park J, Lin Q, Yeo Y. Mol Pharmaceut, 2012, 9: 1262-1270

    8. [8]

      Roser M, Fischer D, Kissel T. Eur J Pharm Biopharm, 1998, 46: 255-263

    9. [9]

      Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson K A. Proc Natl Acad Sci USA, 2008, 105: 14265-14270

    10. [10]

      Ju C, Mo R, Xue J, Zhang L, Zhao Z, Xue L, Ping Q, Zhang C. Angew Chem Int Ed, 2014, 53: 6253-6258

    11. [11]

      Guo J, Ping Q, Jiang G, Huang L, Tong Y. Int J Pharm, 2003, 260: 167-173

    12. [12]

      Zhou Z, Ma X, Murphy C J, Jin E, Sun Q, Shen Y, Van Kirk E A, Murdoch W J. Angew Chem Int Ed, 2014, 53: 10949-10955

    13. [13]

      Oh N M, Oh K T, Lee E S. Colloid Surface B, 2014, 19: 14-21

    14. [14]

      Wu W, Wang J, Lin Z, Li X, Li J. Macromol Rapid Commun, 2014, 35: 1679-1684

    15. [15]

      Kaur R, Henriksen-Lacey M, Wilkhu J, Devitt A, Christensen D, Perrie Y. Mol Pharmaceut, 2014, 11: 197-207

    16. [16]

      Qian R, Ding L, Ju H. J Am Chem Soc, 2013, 135: 13282-13285

    17. [17]

      Sarker S R, Hokama R, Takeoka S. Mol Pharmaceut, 2014, 11: 164-174

    18. [18]

      Zhu C, Zheng M, Meng F, Mickler F M, Ruthardt N, Zhu X, Zhong Z. Biomacromolecules, 2012, 13: 769-778

    19. [19]

      Tang M X, Szoka F C. Gene Therapy, 1997, 4: 823-832

    20. [20]

      Ladewig K, Xu Z P, Gray P, Lu G Q. J Biomed Mater Res Part A, 2014, 102: 2137-2146

    21. [21]

      Zhang S, Zhou K, Huang G, Takahashi M, Sherry A D, Gao J. Chem Commun, 2013, 49: 6418-6420

    22. [22]

      Tseng S J, Liao Z X, Kao S H, Zeng Y F, Huang K Y, Li H J, Yang C L, Deng Y F, Huang C F, Yang S C, Yang P C, Kempson I M. Nat Commun, 2015, 6: 6456

    23. [23]

      Li L, Raghupathi K, Yuan C, Thayumanavan S. Chem Sci, 2013, 4: 3654-3660

    24. [24]

      Bigall N C, Curcio A, Leal M P, Falqui A, Palumberi D, Corato R D, Albanesi E, Cingolani R, Pellegrino T. Adv Mater, 2011, 23: 5645-5650

    25. [25]

      Liu Q, Yin B, Yang T, Yang Y, Shen Z, Yao P, Li F. J Am Chem Soc, 2013, 135: 5029-5037

    26. [26]

      Mahmoud K A, Mena J A, Male K B, Hrapovic S, Kamen A, Luong J H T. ACS Appl Mater Interfaces, 2010, 2: 2924-2932

    27. [27]

      Mostaghaci B, Loretz B, Haberkorn R, Kickelbick G, Lehr C M. Chem Mater, 2013, 25: 3667-3674

    28. [28]

      Park J, Nam J, Won N, Jin H, Jung S, Jung S, Cho S H, Kim S. Adv Funct Mater, 2011, 21: 1558-1566

    29. [29]

      Guo L, Wang C, Yang C, Wang X, Zhang T, Zhang Z, Yan H, Liu K. Polymer, 2016, 84: 189-197

    30. [30]

      Chorom M, Rengasamy P. Eur J Soil Sci, 1995, 46: 657-665

    31. [31]

      Tomalia D A, Naylor A M, Goddard W A. Angew Chem Int Ed, 1990, 29: 138-175

    32. [32]

      Su Y L, Li C. J Colloid Interf Sci, 2007, 316: 344-349.

    33. [33]

      Bhattarai N, Gunn J, Zhang M. Adv Drug Deliv Rev, 2010, 62: 83-99

    34. [34]

      Du J Z, Sun T M, Song W J, Wu J, Wang J. Angew Chem Int Ed, 2010, 49: 3621-3626

    35. [35]

      Zhang Y, Wang C, Xu C, Yang C, Zhang Z, Yan H, Liu K. Chem Commun, 2013, 49: 7286-7288

    36. [36]

      Chen W, Achazi K, Schade B, Haag R. J Control Release, 2015, 205: 15-24

    37. [37]

      Lu J, Jia H, Guo L, Zhang G, Cao Y, Yan H, Liu K. Eur Polym J, 2015, 66: 376-385

  • 加载中
    1. [1]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    2. [2]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    3. [3]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    4. [4]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    5. [5]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    6. [6]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    7. [7]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    8. [8]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    9. [9]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    10. [10]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    11. [11]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    15. [15]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    16. [16]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    17. [17]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(0)
  • Abstract views(174)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return