Citation: Mao Fan, Si-rui Fu, Shuo Guo, Feng Chen, Qiang Fu. Fabrication of High-performance PBS/PETG Blends by High-speed Extrusion[J]. Acta Polymerica Sinica, ;2018, 0(9): 1244-1252. doi: 10.11777/j.issn1000-3304.2018.18005 shu

Fabrication of High-performance PBS/PETG Blends by High-speed Extrusion

  • Corresponding author: Qiang Fu, qiangfu@scu.edu.cn
  • Received Date: 4 January 2018
    Revised Date: 26 February 2018
    Available Online: 1 March 2018

  • Blends based on poly(butylene succinate) (PBS) and poly(ethylene glycol-co-cyclohexane-1,4-dimethanolterephthalate) (PETG) were successfully fabricated by a special twin screw extruder. Effects of PETG content and rotating speed on the dispersed size and mechanical properties of the PBS/PETG blends were investigated. The average diameter of PETG phase showed a downwards trend from 2.27 μm to 0.89 μm with increasing rotating speed from 150 r/min to 900 r/min for a blend with 20 wt% of PETG. Meanwhile, the yield strength of the blend was raised from 26.2 MPa to 33.4 MPa. In addition, the elongation at break was also promoted from 13.3% to 133.3%, which indicated a transformation from brittle fracture into ductile fracture as accomplished by high speed extrusion. However, the decrease of the dispersed PETG size was very limited by increasing rotating speed for the blends containing 10 wt% or 30 wt% of PETG. As a result, the yield strength and the elongation at break showed only limited increase in the obtained blends. The relationship between the size of the dispersed phase and mechanical properties of the PBS/PETG blends prepared with different components and at different rotating speeds were analyzed comprehensively. A nearly linear relationship was found between the yield strength and the diameter of the dispersed phase, disregarding the composition and rotating speed. This demonstrated again the importance of the size of the dispersed phase in determining the property of PBS/PETG blends. GPC and DSC results indicated no obvious change in molecular weight and crystallinity of PBS by increasing rotating speed, and the observed property change of the blends was well explained by the change of dispersed phase size induced by high speed rotating. It should be noted that the high speed rotating induced change in the size of the dispersed phase was thermodynamically unstable. The stability of the blends will be investigated in our future work.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      Sang L, Zhao M, Liang Q, Wei Z. Polymers, 2017, 9(8): 351 − 364

    6. [6]

      Fortunati E, Puglia D, Iannoni A, Terenzi A, Kenny J M, Torre L. Materials, 2017, 10(7): 809 − 824

    7. [7]

      Liu G C, Zhang W Q, Zhou S L, Wang X L, Wang Y Z. RSC Adv, 2016, 6(73): 68942 − 68951

    8. [8]

      Feng Y H, Li Y J, Xu BP, Zhang D W, Qu J P, He H Z. Compos Part B, 2013, 44(1): 193 − 199

    9. [9]

      Zhou W H, Ye S W, Chen Y W, Huang Y L, Yuan S S. J Macromol Sci B, 2012, 51(12): 2361 − 2376

    10. [10]

      PivsaArt W, Fujii K, Nomura K, Aso Y, Ohara H, Yamane H. J. Polym Res, 2016, 23(8): 144 − 151

    11. [11]

      Voznyak Y, Morawiec J, Galeski A. Compos Part A, 2016, 90: 218 − 224

    12. [12]

      Zhou M, Fan M, Zhao Y S, Jin T X, Fu Q. Carbohydr Polym, 2016, 140: 383 − 392

    13. [13]

      Zhou M, Xu S M, Li Y H, He C, Jin T X, Wang K, Deng H, Zhang Q, Chen F, Fu Q. Polymer, 2014, 55(13): 3045 − 3053

    14. [14]

      Lv Z Y, Zhang M C, Zhang Y, Guo B H, Xu J. Chinese J Polym Sci, 2017, 35(12): 1552 − 1560

    15. [15]

      Jiang J, Zhuravlev E, Hu W B, Schick C, Zhou D S. Chinese J Polym Sci, 2017, 35(8): 1009 − 1019

    16. [16]

    17. [17]

    18. [18]

      Shibata M, Inoue Y, Miyoshi M. Polymer, 2006, 47(10): 3557 − 3564

    19. [19]

      Wu J H, Yen M S, Kuo M C, Tsai Y H, Leu M T. J Appl Polym Sci, 2015, 132(27): 42207

    20. [20]

      Martinez A B, Leon N, Arencon D, Rodriguez J, Salazar A. Polym Test, 2013, 32(7): 1244 − 1252

    21. [21]

      Chen T T, Zhang W K, Zhang J. Polym. Degrad Stab, 2015, 120: 232 − 243

    22. [22]

      Jiang W R, Bao R Y, Yang W, Liu Z Y, Xie B H, Yang M B. Mater Design, 2014, 59: 524 − 531

    23. [23]

      Wang X D, Liu W, Zhou H F, Liu B G, Li H Q, Du Z J, Zhang C. Polymer, 2013, 54(21): 5839 − 5851

    24. [24]

      Louizi M, Massardier V, Cassagnau P. Macromol Mater Eng, 2014, 299(6): 674 − 688

    25. [25]

      Li Y J, Shimizu H. Macromol Biosci, 2007, 7(7): 921 − 928

    26. [26]

      Li Y, Shimizu H. Polym Eng Sci, 2011, 51(7): 1437 − 1445

    27. [27]

      Teyssandier F, Cassagnau P, Gérard J F, Mignard N, Mélis F. Mater Chem Phys, 2012, 133(2-3): 913 − 923

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    4. [4]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    7. [7]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    10. [10]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    11. [11]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    12. [12]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    13. [13]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    19. [19]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    20. [20]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

Metrics
  • PDF Downloads(0)
  • Abstract views(167)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return