Citation: Xiao-qiang Xue, Feng Qian, Wen-yan Huang, Hong-jun Yang, Qi-min Jiang, Lei Zhou, Bi-biao Jiang. Preparation and Multiple Responsiveness of Copolymers of PNIPAM Containing Azo Pyridine in Side Chain[J]. Acta Polymerica Sinica, ;2018, 0(9): 1175-1183. doi: 10.11777/j.issn1000-3304.2018.18002 shu

Preparation and Multiple Responsiveness of Copolymers of PNIPAM Containing Azo Pyridine in Side Chain

  • Corresponding author: Bi-biao Jiang, jiangbibiao@cczu.edu.cn
  • Received Date: 2 January 2018
    Revised Date: 26 March 2018
    Available Online: 7 May 2018

  • A novel azopyridine monomer was prepared by diazo coupling: 4-(4-pyridylazo) phenyl methacrylate (PAZO). PAZO was randomly copolymerized with N-isopropylacrylamide (NIPAM) and ethylene glycol methyl ether methacrylate (EGMA) to obtain a multi-response terpolymer (P(NIPAM-co-PAZO-co-EGMA)). The structure of the polymer was characterized by 1H-NMR and gel permeation chromatography (GPC), and the responsiveness of the polymer to UV spectroscopy was studied. Under the acidic conditions, the trans absorption peak of azo pyridine is stable and the weakness is inhibited. Under alkaline conditions, the trans absorption peak is weak, and the cis absorption peak is enhanced and stable. The lowest phase transition temperature (LCST) of the polymer was 49 °C. The trans structure of azopyridine was changed to the cis structure by ultraviolet light irradiation. Before UV irradiation, the hydrodynamic radius of the polymer was 9.82 nm. After the UV illumination, the value became 11.07 nm, and increased by 1.25 nm, indicating that the polymer size was increased after UV illumination. The size of the polymer increased with the increased size of the azo pyridine structure, making the PNIPAM segment more sensitive to temperature and LCST decreased 2 °C to 47 °C. The LCST of polymer sites before introduction of CO2 was 49 °C, and that was changed to 62 °C after passing through CO2. Argon is bubbled through the polymer solution or the solution is left open at 60 °C for a period of time to evacuate the CO2. The LCST of the solution changes to 49 °C again. Before and after the introduction of CO2, there was no obvious change in the LCST point of the aqueous solution of PNIPAM, indicating that the carbonic acid did not affect the amine group on the PNIPAM group, but instead was protonated with the azopyridine group. The CO2 and argon gasses were repeatedly introduced. The LCST of the polymer solution changed reversibly between 49 and 62 °C.
  • 加载中
    1. [1]

      Liu J H, Chen G S, Gao M Y, Jiang M. Macromolecules, 2010, 43: 8086 − 8093  doi: 10.1021/ma101437k

    2. [2]

      Owens D E, Jian Y C, Fang J E, Slaughter B V, Chen Y H, Peppas N A. Macromolecules, 2007, 40: 7306 − 7310  doi: 10.1021/ma071089x

    3. [3]

      Xue X Q, Yang J, Huang W Y, Yang H J, Jiang B B, Li F, Jiang Y. Polymer, 2015, 73: 195 − 204  doi: 10.1016/j.polymer.2015.07.035

    4. [4]

      Xue X Q, Yang J, Huang W Y, Yang H J, Jiang B B. Polymers, 2015, 7: 1248 − 1268  doi: 10.3390/polym7071248

    5. [5]

    6. [6]

    7. [7]

      Olivier B, Han D H, Luc T, Zhao Y. Soft Matter, 2011, 7: 9410 − 9415  doi: 10.1039/c1sm06149f

    8. [8]

      Liu Y J, Agnes P, Sun J, Sergii R, Damien B, Matthieu P, Emmanuelle M, Christophe T. Soft Matter, 2012, 8: 8446 − 8455  doi: 10.1039/c2sm25959a

    9. [9]

      Jie H, Luc T, Serge L, Zhao Y. Polym Chem, 2014, 5: 5403 − 5411

    10. [10]

    11. [11]

      Ho-Joong K, Jung-Hoon L, Myongsoo L. Angew Chem Int Ed, 2005, 44: 5810 − 5814  doi: 10.1002/(ISSN)1521-3773

    12. [12]

    13. [13]

    14. [14]

    15. [15]

      Akiyama H, Tamaoki N. Macromolecules, 2007, 40(14): 5129 − 5132  doi: 10.1021/ma070628v

    16. [16]

      Cui L, Zhao Y. Chem Mater, 2004, 16: 2076 − 2082  doi: 10.1021/cm0348850

    17. [17]

      Ho-Joong K, Wng-Cheol Z, Myongsoo L. J Am Chem Soc, 2004, 126: 7009 − 7014  doi: 10.1021/ja049799v

    18. [18]

      Yu B, Jiang X, Wang R, Yin J. Macromolecules, 2010, 43: 10457 − 10465  doi: 10.1021/ma1023632

  • 加载中
    1. [1]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    2. [2]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    3. [3]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    8. [8]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    9. [9]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    12. [12]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    13. [13]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    14. [14]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    15. [15]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    16. [16]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    20. [20]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

Metrics
  • PDF Downloads(0)
  • Abstract views(184)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return