Citation: Xiao Chun-sheng, Ding Jian-xun, Chao-liang He, Chen Xue-si. Glycopolypeptides: Synthesis, Self-assembly and Biomedical Applications[J]. Acta Polymerica Sinica, ;2018, (1): 45-55. doi: 10.11777/j.issn1000-3304.2018.17282 shu

Glycopolypeptides: Synthesis, Self-assembly and Biomedical Applications

  • Corresponding author: Chen Xue-si, xschen@ciac.ac.cn
  • Received Date: 7 October 2017
    Revised Date: 12 November 2017

  • Glycopolypeptides are a kind of biodegradable polymers consisting of polypeptides (polyamino acid) and carbohydrates (such as monosaccharide, oligosaccharides and polysaccharides). Owing to their chemical similarity to glycoproteins, glycopolypeptides can, to some extent, mimic the structure and function of natural glycoproteins, and have attracted broad attention recently. Two general strategies have been developed for the synthesis of glycopolypeptides, i.e. direct polymerization of glycosylated monomers and post-polymerization glycosylation of reactive polypeptides. Although the synthesis of glycopolypeptides can be traced back to sixty years ago, the synthesis of glycopolypeptides with Control architectures and high molecular weights can be achieved when high purified sugar-substituted amino acid N-carboxyanhydride (NCA) monomers for Control ring-opening polymerization and "clickable" polypeptides for "click" glycosylation have been extensively developed. Based on these advances on Control synthesis of glycopolypeptides, many efforts are devoted to studying the self-assembly of amphiphilic glycopolypeptide (co)polymers into various nano-structures, such as micelles, vesicles and nanorods. More interestingly, hierarchical self-assembly of an alternating amphiphilic glycopolypeptide to mimic the complex structure of natural glycoconjugates also has been achieved. In addition, as a kind of structural mimics of natural glycoproteins, the synthetic glycopolypeptides are capable of binding selectively to various carbohydrate-binding proteins, such as lectins. And the lectin-binding ability is confirmed to be dependent on the type, composition, density and distribution pattern of the sugar residues on the polypeptide backbone. Also, due to the presence of carbohydrate-binding proteins on cell surfaces, especially on the surface of cancer cells, glycopolypeptides have been widely investigated as biocompatible nanocarrieres for targeted drug/gene delivery. Most recently, glycopolypeptides-based hydrogels are receiving increasing attention for tissue engineering applications because of their ability to enhance cell adhesion and proliferation in 3D cell culture. In this article, we summarize recent advances in the synthesis and self-assembly of glycopolypeptides, and their applications in biomedical fields, such as biomolecular recognitions, targeted gene/drug delivery and scaffolds for tissue engineering, are also emphatically reviewed and discussed.
  • 加载中
    1. [1]

      Brockhausen I, Schutzbach J, Kuhns W. Cells Tissues Organs, 1998, 161(1-4):36-78  doi: 10.1159/000046450

    2. [2]

      Rudd P M, Elliott T, Cresswell P, Wilson I A, Dwek R A. Science, 2001, 291(5512):2370-2376  doi: 10.1126/science.291.5512.2370

    3. [3]

      Ohtsubo K, Marth J D. Cell, 2006, 126(5):855-867  doi: 10.1016/j.cell.2006.08.019

    4. [4]

      Davis B G. Chem Rev, 2002, 102(2):579-601  doi: 10.1021/cr0004310

    5. [5]

      Pratt M R, Bertozzi C R. Chem Soc Rev, 2005, 34(1):58-68  doi: 10.1039/b400593g

    6. [6]

      Gamblin D P, Scanlan E M, Davis B G. Chem Rev, 2009, 109(1):131-163  doi: 10.1021/cr078291i

    7. [7]

      Bonduelle C, Lecommandoux S. Biomacromolecules, 2013, 14(9):2973-2983  doi: 10.1021/bm4008088

    8. [8]

      Deng C, Wu J, Cheng R, Meng F, Klok H A, Zhong Z. Prog Polym Sci, 2014, 39(2):330-364  doi: 10.1016/j.progpolymsci.2013.10.008

    9. [9]

      Kramer J R, Deming T J. Polym Chem, 2014, 5(3):671-682  doi: 10.1039/C3PY01081C

    10. [10]

      Krannig K S, Schlaad H. Soft Matter, 2014, 10(24):4228-4235  doi: 10.1039/c4sm00352g

    11. [11]

      Wang Mingzhi, Du Jianzhong. Acta Polymerica Sinica, 2014, (9):1183-1194
       

    12. [12]

      Rude E, Westphal O, Hurwitz E, Fuchs S, Sela M. Immunochemistry, 1966, 3(2):137-151  doi: 10.1016/0019-2791(66)90293-X

    13. [13]

      Rude E, Meyerdel M. Carbohydr Res, 1968, 8(2):219-232  doi: 10.1016/S0008-6215(00)80158-5

    14. [14]

      Aoi K, Tsutsumiuchi K, Okada M. Macromolecules, 1994, 27(3):875-877  doi: 10.1021/ma00081a040

    15. [15]

      Aoi K, Tsutsumiuchi K, Aoki E, Okada M. Macromolecules, 1996, 29(12):4456-4458  doi: 10.1021/ma9601068

    16. [16]

      Aoi K, Tsutsumiuchi K, Yamamoto A, Okada M. Tetrahedron, 1997, 53(45):15415-15427  doi: 10.1016/S0040-4020(97)00970-8

    17. [17]

      Tsutsumiuchi K, Aoi K, Okada M. Macromolecules, 1997, 30(14):4013-4017  doi: 10.1021/ma970086p

    18. [18]

      Aoi K, Tsutsumiuchi K, Yamamoto A, Okada M. Macromol Rapid Commun, 1998, 19(1):5-9
       

    19. [19]

      Kramer J R, Deming T J. J Am Chem Soc, 2010, 132(42):15068-15071  doi: 10.1021/ja107425f

    20. [20]

      Pati D, Shaikh A Y, Hotha S, Sen Gupta S. Polym Chem, 2011, 2(4):805-811  doi: 10.1039/c0py00412j

    21. [21]

      Pati D, Shaikh A Y, Das S, Nareddy P K, Swamy M J, Hotha S, Sen Gupta S. Biomacromolecules, 2012, 13(5):1287-1295  doi: 10.1021/bm201813s

    22. [22]

      Stoehr T, Blaudszun A-R, Steinfeld U, Wenz G. Polym Chem, 2011, 2(10):2239-2248  doi: 10.1039/c1py00187f

    23. [23]

      Kramer J R, Deming T J. J Am Chem Soc, 2012, 134(9):4112-4115  doi: 10.1021/ja3007484

    24. [24]

      Krannig K S, Doriti A, Schlaad H. Macromolecules, 2014, 47(7):2536-2539  doi: 10.1021/ma500379m

    25. [25]

      Das S, Parekh N, Mondal B, Gupta S S. ACS Macro Lett, 2016, 5(7):809-813  doi: 10.1021/acsmacrolett.6b00297

    26. [26]

      Tsuda T, Nishimura S I. Chem Commun, 1996, (24):2779-2780  doi: 10.1039/cc9960002779

    27. [27]

      Tachibana Y, Matsubara N, Nakajima F, Tsuda T, Tsuda S, Monde K, Nishimura S I. Tetrahedron, 2002, 58(51):10213-10224  doi: 10.1016/S0040-4020(02)01359-5

    28. [28]

      Tachibana Y, Fletcher G L, Fujitani N, Tsuda S, Monde K, Nishimura S I. Angew Chem Int Ed, 2004, 43(7):856-862  doi: 10.1002/(ISSN)1521-3773

    29. [29]

      Tachibana Y, Monde K, Nishimura S-I. Macromolecules, 2004, 37(18):6771-6779  doi: 10.1021/ma049756z

    30. [30]

      Takasu A, Horikoshi S, Hirabayashi T. Biomacromolecules, 2005, 6(4):2334-2342  doi: 10.1021/bm0502563

    31. [31]

      Midoux P, Mendes C, Legrand A, Raimond J, Mayer R, Monsigny M, Roche A C. Nucleic Acids Res, 1993, 21(4):871-878  doi: 10.1093/nar/21.4.871

    32. [32]

      Kobayashi K, Tawada E, Akaike T, Usui T. BBA-General Subjects, 1997, 1336(2):117-122  doi: 10.1016/S0304-4165(97)00018-4

    33. [33]

      Mahato R I, Takemura S, Akamatsu K, Nishikawa M, Takakura Y, Hashida M. Biochem Pharmacol, 1997, 53(6):887-895  doi: 10.1016/S0006-2952(96)00880-5

    34. [34]

      Zeng X, Murata T, Kawagishi H, Usui T, Kobayashi K. Carbohydr Res, 1998, 312(4):209-217  doi: 10.1016/S0008-6215(98)00259-6

    35. [35]

      Zeng X, Murata T, Kawagishi H, Usui T, Kobayashi K. Biosci Biotechnol Biochem, 1998, 62(6):1171-1178  doi: 10.1271/bbb.62.1171

    36. [36]

      Tian Z, Wang M, Zhang A Y, Feng Z G. Polymer, 2008, 49(2):446-454  doi: 10.1016/j.polymer.2007.11.048

    37. [37]

      Mildner R, Menzel H. J Polym Sci, Part A:Polym Chem, 2013, 51(18):3925-3931  doi: 10.1002/pola.v51.18

    38. [38]

      Perdih P, Cebasek S, Mozir A, Zagar E. Molecules, 2014, 19(12):19751-19768  doi: 10.3390/molecules191219751

    39. [39]

      Hoyle C E, Lowe A B, Bowman C N. Chem Soc Rev, 2010, 39(4):1355-1387  doi: 10.1039/b901979k

    40. [40]

      Thoma G, Patton J T, Magnani J L, Ernst B, Ohrlein R, Duthaler R O. J Am Chem Soc, 1999, 121(25):5919-5929  doi: 10.1021/ja984183p

    41. [41]

      Quadir M A, Martin M, Hammond P T. Chem Mater, 2013, 26(1):461-476
       

    42. [42]

      Deming T J. Chem Rev, 2016, 116(3):786-808  doi: 10.1021/acs.chemrev.5b00292

    43. [43]

      Xiao C, Zhao C, He P, Tang Z, Chen X, Jing X. Macromol Rapid Commun, 2010, 31(11):991-997  doi: 10.1002/marc.200900821

    44. [44]

      Huang J, Habraken G, Audouin F, Heise A. Macromolecules, 2010, 43(14):6050-6057  doi: 10.1021/ma101096h

    45. [45]

      Tang H, Zhang D. Biomacromolecules, 2010, 11(6):1585-1592  doi: 10.1021/bm1002174

    46. [46]

      Wang X, Ge C L, Ling Y, Tang H Y. RSC Adv, 2015, 5(130):108023-108029  doi: 10.1039/C5RA24697K

    47. [47]

      Li M J, Wang X, Xu Y Z, Ling Y, Tang H Y. Polym Int, 2016, 65(12):1493-1500  doi: 10.1002/pi.2016.65.issue-12

    48. [48]

      Rhodes A J, Deming T J. ACS Macro Lett, 2013, 2(5):351-354  doi: 10.1021/mz4001089

    49. [49]

      Krannig K S, Schlaad H. J Am Chem Soc, 2012, 134(45):18542-18545  doi: 10.1021/ja308772d

    50. [50]

      Krannig K S, Huang J, Heise A, Schlaad H. Polym Chem, 2013, 4(14):3981-3986  doi: 10.1039/c3py00428g

    51. [51]

      Liu Y J, Zhang Y F, Wang Z Y, Wang J, Wei K C, Chen G S, Jiang M. J Am Chem Soc, 2016, 138(38):12387-12394  doi: 10.1021/jacs.6b05044

    52. [52]

      Kramer J R, Deming T J. Biomacromolecules, 2012, 13(6):1719-1723  doi: 10.1021/bm300807b

    53. [53]

      Kramer J R, Deming T J. Chem Commun, 2013, 49(45):5144-5146  doi: 10.1039/c3cc42214c

    54. [54]

      Gharakhanian E G, Deming T J. Biomacromolecules, 2015, 16(6):1802-1806  doi: 10.1021/acs.biomac.5b00372

    55. [55]

      Schatz C, Louguet S, Le Meins J F, Lecommandoux S. Angew Chem Int Ed, 2009, 48(14):2572-2575  doi: 10.1002/anie.v48:14

    56. [56]

      Bonduelle C, Oliveira H, Gauche C, Huang J, Heise A, Lecommandoux S. Chem Commun, 2016, 52(75):11251-11254  doi: 10.1039/C6CC06437J

    57. [57]

      Upadhyay K K, Meins J F L, Misra A, Voisin P, Bouchaud V, Ibarboure E, Schatz C, Lecommandoux S. Biomacromolecules, 2009, 10(10):2802-2808  doi: 10.1021/bm9006419

    58. [58]

      Upadhyay K K, Bhatt A N, Castro E, Mishra A K, Chuttani K, Dwarakanath B S, Schatz C, Le Meins J F, Misra A, Lecommandoux S. Macromol Biosci, 2010, 10(5):503-512
       

    59. [59]

      Wang Rui, Xu Ning, Du Fusheng, Li Zichen. Acta Polymerica Sinica, 2013, (6):774-780
       

    60. [60]

      Wang R, Xu N, Du F S, Li Z C. Chem Commun, 2010, 46(22):3902-3904  doi: 10.1039/c002473b

    61. [61]

      Bonduelle C, Huang J, Ibarboure E, Heise A, Lecommandoux S. Chem Commun, 2012, 48(67):8353-8355  doi: 10.1039/c2cc32970k

    62. [62]

      Huang J, Bonduelle C, Thevenot J, Lecommandoux S, Heise A. J Am Chem Soc, 2012, 134(1):119-122  doi: 10.1021/ja209676p

    63. [63]

      Kramer J R, Rodriguez A R, Choe U J, Kamei D T, Deming T J. Soft Matter, 2013, 9(12):3389-3395  doi: 10.1039/c3sm27559k

    64. [64]

      Pati D, Das S, Patil N G, Parekh N, Anjum D H, Dhaware V, Ambade A V, Sen Gupta S. Biomacromolecules, 2016, 17(2):466-475  doi: 10.1021/acs.biomac.5b01354

    65. [65]

      Pati D, Kalva N, Das S, Kumaraswamy G, Sen Gupta S, Ambade A V. J Am Chem Soc, 2012, 134(18):7796-7802  doi: 10.1021/ja300065f

    66. [66]

      Das S, Sharma D K, Chakrabarty S, Chowdhury A, Sen Gupta S. Langmuir, 2015, 31(11):3402-3412  doi: 10.1021/la503993e

    67. [67]

      Qiu H B. Sci China Chem, 2016, 59(12):1621-1622  doi: 10.1007/s11426-016-0423-0

    68. [68]

      Lee Y C, Lee R T. Acc Chem Res, 1995, 28(8):321-327  doi: 10.1021/ar00056a001

    69. [69]

      Lis H, Sharon N. Chem Rev, 1998, 98(2):637-674  doi: 10.1021/cr940413g

    70. [70]

      Jacobs J, Byrne A, Gathergood N, Keyes T E, Heuts J P A, Heise A. Macromolecules, 2014, 47(21):7303-7310  doi: 10.1021/ma5020462

    71. [71]

      Mildner R, Menzel H. Biomacromolecules, 2014, 15(12):4528-4533  doi: 10.1021/bm501325n

    72. [72]

      Byrne M, Mildner R, Menzel H, Heise A. Macromol Biosci, 2015, 15(1):74-81  doi: 10.1002/mabi.201400371

    73. [73]

      Gauche C, Lecommandoux S. Polymer, 2016, 107474-107484

    74. [74]

      Lavilla C, Yilmaz G, Uzunova V, Napier R, Becer C R, Heise A. Biomacromolecules, 2017, 18(6):1928-1936  doi: 10.1021/acs.biomac.7b00356

    75. [75]

      D'Souza A A, Devarajan P V. J Control Release, 2015, 203(Supplement C):126-139

    76. [76]

      Erbacher P, Roche A C, Monsigny M, Midoux P. Bioconjugate Chem, 1995, 6(4):401-410  doi: 10.1021/bc00034a010

    77. [77]

      Hashida M, Takemura S, Nishikawa M, Takakura Y. J Control Release, 1998, 53(1):301-310
       

    78. [78]

      Nishikawa M, Takemura S, Takakura Y, Hashida M. J Pharmacol Exp Ther, 1998, 287(1):408-415
       

    79. [79]

      Hirabayashi H, Nishikawa M, Takakura Y, Hashida M. Pharm Res, 1996, 13(6):880-884  doi: 10.1023/A:1016053128569

    80. [80]

      Akamatsu K, Nishikawa M, Takakura Y, Hashida M. Int J Pharm, 1997, 155(1):65-74  doi: 10.1016/S0378-5173(97)00159-2

    81. [81]

      Hashida M, Hirabayashi H, Nishikawa M, Takakura Y. J Control Release, 1997, 46(1):129-137
       

    82. [82]

      Distefano G, Busi C, Mattioli A, Fiume L. Biochem Pharmacol, 1995, 49(12):1769-1775  doi: 10.1016/0006-2952(95)00020-Z

    83. [83]

      Fiume L, Di Stefano G, Busi C, Mattioli A, Rapicetta M, Giuseppetti R, Ciccaglione A R, Argentini C. Hepatology, 1995, 22(4, Part 1):1072-1077
       

    84. [84]

      Fiume L, Stefano G D, Busi C, Mattioli A, Gervasi G B, Bertini M, Bartoli C, Catalani R, Caccia G, Farina C, Fissi A, Pieroni O, Giuseppetti R, D'Ugo E, Rapicetta M. J Hepatol, 1997, 26(2):253-259  doi: 10.1016/S0168-8278(97)80038-4

    85. [85]

      Stefano G D, Colonna F P, Bongini A, Busi C, Mattioli A, Fiume L. Biochem Pharmacol, 1997, 54(3):357-363  doi: 10.1016/S0006-2952(97)00223-2

    86. [86]

      Di Stefano G, Busi C, Camerino A, Derenzini M, Trerè D, Fiume L. Biochem Pharmacol, 2001, 61(4):459-465  doi: 10.1016/S0006-2952(00)00561-X

    87. [87]

      Liang H F, Yang T F, Huang C T, Chen M C, Sung H W. J Control Release, 2005, 105(3):213-225  doi: 10.1016/j.jconrel.2005.03.021

    88. [88]

      Liang H F, Chen C T, Chen S C, Kulkarni A R, Chiu Y L, Chen M C, Sung H W. Biomaterials, 2006, 27(9):2051-2059  doi: 10.1016/j.biomaterials.2005.10.027

    89. [89]

      Ding J, Xiao C, Li Y, Cheng Y, Wang N, He C, Zhuang X, Zhu X, Chen X. J Control Release, 2013, 169(3):193-203  doi: 10.1016/j.jconrel.2012.12.006

    90. [90]

      Kollen W J W, Midoux P, Erbacher P, Yip A, Roche A C, Monsigny M, Glick M C, Scanlin T F. Hum Gene Ther, 1996, 7(13):1577-1586  doi: 10.1089/hum.1996.7.13-1577

    91. [91]

      Fajac I, Briand P, Monsigny M, Midoux P. Hum Gene Ther, 1999, 10(3):395-406  doi: 10.1089/10430349950018841

    92. [92]

      Kollen W J W, Schembri F M, Gerwig G J, Vliegenthart J F G, Glick M C, Scanlin T F. Am J Respir Cell Mol Biol, 1999, 20(5):1081-1086  doi: 10.1165/ajrcmb.20.5.3417

    93. [93]

      Klink D T, Chao S, Glick M C, Scanlin T F. Molecular Therapy, 2001, 3(6):831-841  doi: 10.1006/mthe.2001.0332

    94. [94]

      Grosse S, Tremeau-Bravard A, Aron Y, Briand P, Fajac I. Gene Therapy, 2002, 9(15):1000-1007  doi: 10.1038/sj.gt.3301768

    95. [95]

      Klink D, Yu Q C, Glick M C, Scanlin T. Molecular Therapy, 2003, 7(1):73-80  doi: 10.1016/S1525-0016(02)00016-3

    96. [96]

      Erbacher P, Bousser M T, Raimond J, Monsigny M, Midoux P, Roche A C. Hum Gene Ther, 1996, 7(6):721-729  doi: 10.1089/hum.1996.7.6-721

    97. [97]

      Cheng Y, He C, Xiao C, Ding J, Cui H, Zhuang X, Chen X. Biomacromolecules, 2013, 14(2):468-475  doi: 10.1021/bm3017059

    98. [98]

      Ren K X, He C L, Xiao C S, Li G, Chen X S. Biomaterials, 2015, 51:238-249  doi: 10.1016/j.biomaterials.2015.02.026

    99. [99]

      Borase T, Ninjbadgar T, Kapetanakis A, Roche S, O'Connor R, Kerskens C, Heise A, Brougham D F. Angew Chem Int Ed, 2013, 52(11):3164-3167  doi: 10.1002/anie.201208099

    100. [100]

      Kramer J R, Schmidt N W, Mayle K M, Kamei D T, Wong G C L, Deming T J. ACS Cent Sci, 2015, 1(2):83-88  doi: 10.1021/acscentsci.5b00054

    101. [101]

      Kramer J R, Onoa B, Bustamante C, Bertozzi C R. Proc Natl Acad Sci USA, 2015, 112(41):12574-12579  doi: 10.1073/pnas.1516127112

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    4. [4]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    5. [5]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    10. [10]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    11. [11]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    12. [12]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    15. [15]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    16. [16]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    17. [17]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    18. [18]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    19. [19]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    20. [20]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

Metrics
  • PDF Downloads(0)
  • Abstract views(122)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return