Citation: Ting-ting Lu, Si-ju Chang, Yuan-yuan Liu, Jin-qiang Pan, Wen-yong Lai, Wei Huang. Ladder-type Indenefluorenylene-based Conjugated Polymers with RGB Emission as Efficient Gain Media for Organic Lasers: Design, Synthesis, and Optical Gain Properties[J]. Acta Polymerica Sinica, ;2018, (2): 304-314. doi: 10.11777/j.issn1000-3304.2018.17261 shu

Ladder-type Indenefluorenylene-based Conjugated Polymers with RGB Emission as Efficient Gain Media for Organic Lasers: Design, Synthesis, and Optical Gain Properties

  • Corresponding author: Wen-yong Lai, iamwylai@njupt.edu.cn
  • Received Date: 11 September 2017
    Revised Date: 7 October 2017

  • A set of novel ladder-type conjugated copolymers (2LF-An, 2LF-BT and 2LF-TBT) were designed, synthesized, and investigated as efficient gain media for organic lasers. The polymers were synthesized via Suzuki polymerization of indenefluorene units with varying blue, green, and red emitting units to afford RGB conjugated polymers with the emission wavelength ranging from 448 nm to 632 nm, covering the full visible spectrum. The thermal, morphological, photophysical, electrochemical, electroluminescent, and optical gain properties of the resulting conjugated polymers were systematically investigated and compared with those of the poly(9, 9-dioctylfluorene-co-benzothiadiazole) (F8BT) counterpart. With the ladder-type backbone structures incorporated, the resulting indenofluorene-based conjugated polymers exhibited enhanced optical and electrical properties with low ASE thresholds and high net gain coefficients. Organic light-emitting diodes (OLEDs) based on 2LF-An, 2LF-BT and 2LF-TBT were fabricated. The current efficiency of the 2LF-An, 2LF-BT and 2LF-TBT devices was 1.10, 3.11 and 0.50 cd/A, respectively, while the maximum brightness was 2772, 8582, 1682 cd/m2, respectively. Low amplified spontaneous emission (ASE) thresholds were achieved for 2LF-An (20.90 μJ/cm2) and 2LF-BT (65.84 μJ/cm2) with high gain coefficients of 62.40 cm-1 for 2LF-An and 66.07 cm-1 for 2LF-BT, respectively. By blending 1% 2LF-TBT into 2LF-BT, high optical gain coefficients of g=68 cm-1 were recorded for 2LF-TBT with the ASE peak at 600 nm and the ASE threshold of 68 cm-1. For comparison, the optical gain coefficient of F8BT was recorded at around 26.88 cm-1 under identical test conditions. The results suggested that the incorporation of ladder-type indenofluorene chain structures played a positive role on improving the optical gain properties. More impressively, the low ASE thresholds were almost unchanged for the samples even upon annealing up to 200 ℃ for the polymers, indicating excellent optical stability. The excellent optical stability, low ASE thresholds, and high net gain coefficients of the resulting polymers have promised their great potential to be used as efficient gain media for organic lasing.
  • 加载中
    1. [1]

      Xie L H, Yin C R, Lai W Y, Fan Q L, Huang W. Prog Polym Sci, 2012, 37:1192-1264  doi: 10.1016/j.progpolymsci.2012.02.003

    2. [2]

      Zhang Z, Lin F, Chen H C, Wu H C, Chung C L, Lu C, Liu S H, Tung S H, Chen W C, Wong K T, Chou P T. Energ Environ Sci, 2015, 8:552-557  doi: 10.1039/C4EE03642E

    3. [3]

      Sirringhaus H. Adv Mater, 2014, 26:1319-1335  doi: 10.1002/adma.201304346

    4. [4]

      Gu Pengcheng, Yao Yifan, Dong Huanli, Hu Wenpin. Acta Polymerica Sinica, 2014, (8):1029-1040
       

    5. [5]

      Muller C D, Falcou A, Reckefuss N, Rojahn M, Wiederhirn V, Rudati P, Frohne H, Nuyken O, Becker H, Meerholz K. Nature, 2003, 421:829-833  doi: 10.1038/nature01390

    6. [6]

      McGehee M D, Heeger A J. Adv Mater, 2000, 12:1655-1668  doi: 10.1002/(ISSN)1521-4095

    7. [7]

      Grivas C, Pollnau M. Laser Photon Rev, 2012, 6:419-462  doi: 10.1002/lpor.201100034

    8. [8]

      Forrest S R. Nature, 2004, 428:911-918  doi: 10.1038/nature02498

    9. [9]

      Samue I D W L, Turnbull G A. Chem Rev, 2007, 107:1272-1295  doi: 10.1021/cr050152i

    10. [10]

      Kuehne A J C, Gather M C. Chem Rev, 2016, 116:12823-12864  doi: 10.1021/acs.chemrev.6b00172

    11. [11]

      Huang Hongliang, Chen Bo, Ma Zhihua, Ding Junqiao, Wang Lixiang. Acta Polymerica Sinica, 2013, (5):626-634
       

    12. [12]

      Yap B K, Xia R, Campoy-Quiles M, Stavrinou P N, Bradley D D C. Nat Mater, 2008, 7:376-380  doi: 10.1038/nmat2165

    13. [13]

      Lai W Y, Xia R, He Q Y, Levermore P A, Huang W, Bradley D D C. Adv Mater, 2009, 21:355-360  doi: 10.1002/adma.v21:3

    14. [14]

      Xu W D, Yi J P, Lai W Y, Zhao L, Zhang Q, Hu W, Zhang X W, Jiang Y, Liu L, Huang W. Adv Funct Mater, 2015, 25:4617-4625  doi: 10.1002/adfm.201501337

    15. [15]

      Yi J P, Zhao L, Xu W, Liu C F, Lai W Y, Huang W. J Mater Chem C, 2016, 4:7546-7553  doi: 10.1039/C6TC01606E

    16. [16]

      Kim H, Schulte N, Zhou G, Müllen K, Laquai F. Adv Mater, 2011, 23:894-897  doi: 10.1002/adma.v23.7

    17. [17]

      Mroz M M, Sforazzini G, Zhong Y, Wong K S, Anderson H L, Lanzani G, Cabanillas-Gonzalez J. Adv Mater, 2013, 25:4347-4351  doi: 10.1002/adma.v25.31

    18. [18]

      Liu C F, Jiu Y D, Wang J Y, Yi J P, Zhang X W, Lai W Y, Huang W. Macromolecules, 2016, 49:2549-2558  doi: 10.1021/acs.macromol.6b00020

    19. [19]

      Jiu Y D, Wang J Y, Yi J P, Liu C F, Zhang X W, Lai W Y, Huang W. Polym Chem, 2017, 8:851-859  doi: 10.1039/C6PY01643J

    20. [20]

      Samuel I D W, Namdas E B, Turnbull G A. Nat Photon, 2009, 3:546-549  doi: 10.1038/nphoton.2009.173

    21. [21]

      Kozlov V G, Bulovic V, Burrows P E, Forrest S R. Nature, 1997, 389:362-364  doi: 10.1038/38693

    22. [22]

      Xia R, Heliotis G, Hou Y, Bradley D D C. Org Electron, 2003, 4:165-177  doi: 10.1016/j.orgel.2003.08.009

    23. [23]

      Xia R, Heliotis G, , Bradley D D C. Appl Phys Lett, 2003, 82:3599-3601  doi: 10.1063/1.1576906

    24. [24]

      Voigt M, Chappel l J, Rowson T, Cadby A, Geoghegan M, Jones R A L, Lidzey D G. Org Electron, 2005, 6:35-45  doi: 10.1016/j.orgel.2005.02.002

    25. [25]

      Yu Z, Guo X, Zhang Q, Chi L, Chen T, Xia R, Wu L, Lüer L, Cabanillas-Gonzalez J. J Phys Chem C, 2016, 120:11350-11358  doi: 10.1021/acs.jpcc.6b01375

    26. [26]

      Lattante S, Cretí A, Lomascolo M, Anni M. Org Electron, 2016, 29:44-49  doi: 10.1016/j.orgel.2015.11.027

    27. [27]

      Abdulla M, Renero-Lecuna C, Kim J S, Friend R H. Org Electron, 2015, 23:87-98  doi: 10.1016/j.orgel.2015.04.002

    28. [28]

      Kim J S, Ho P K H, Murphy C E, Friend R H. Macromolecules, 2004, 37:2861-2871  doi: 10.1021/ma035750i

    29. [29]

      Sims M, Zheng K, Campoy-Quiles M, Xia R, Stavrino u P N, Bradley D D C, Etchegoin P. J Phys Condens Matter, 2005, 17:6307-6318  doi: 10.1088/0953-8984/17/41/002

    30. [30]

      Jiang Y, Fang M, Chang S J, Huang J J, Chu S Q, Hu S M, Liu C F, Lai W Y, Huang W. Chem Eur J, 2017, 23:5448-5458  doi: 10.1002/chem.v23.23

    31. [31]

      Fang M, Huang J J, Zhang Y, Guo X, Zhang X W, Liu C F, Lai W Y, Huang W. Mater Chem Front, 2017, 1:668-676  doi: 10.1039/C6QM00133E

    32. [32]

      Kim J S, Lu L, Sreearunothai P, Seeley A, Yim K H, Petrozza A, Murphy C E, Beljonne D, Cornil J, Friend R H. J Am Chem Soc, 2008, 130:13120-13131  doi: 10.1021/ja803766j

    33. [33]

      Rabe T, Hoping M, Schneider D, Becker E, Johannes H H, Kowalsky W, Weimann T, Wang J, Hinze P, Nehls B S, Scherf U, Farrell T, Riedl T. Adv Funct Mater, 2005, 15:1188-1192  doi: 10.1002/(ISSN)1616-3028

    34. [34]

      Laquai F, Mishra A K, Ribas M R, Petrozza A, Jacob J, Akcelrud L, Müllen K, Friend R H, Wegner G. Adv Funct Mater, 2007, 17:3231-3240  doi: 10.1002/(ISSN)1616-3028

    35. [35]

      Wu Y, Hao X, Wu J, Jin J, Ba X. Macromolecules, 2010, 43:731-738  doi: 10.1021/ma9024448

    36. [36]

      Laquai F, Mishra A K, Müllen K, Friend R H. Adv Funct Mater, 2008, 18:3265-3275  doi: 10.1002/adfm.v18:20

    37. [37]

      Jacob J, Sax S, Gaal M, List E J W, Grimsdale A C, Müllen K. Macromolecules, 2005, 38:9933-9938  doi: 10.1021/ma0517143

    38. [38]

      Niimi K, Shinamura S, Osaka I, Miyazaki E, Takimiya K. J Am Chem Soc, 2011, 133:8732-8739  doi: 10.1021/ja202377m

    39. [39]

      Scherf U, Müllen K, Makromol Chem Rapid Commun, 1991, 12:489-497  doi: 10.1002/marc.1991.030120806

    40. [40]

      Mishra A K, Graf M, Grasse F, Jacob J, List E J W, Müllen K. Chem Mater, 2006, 18:2879-2885  doi: 10.1021/cm060072a

    41. [41]

      Jacob J, Sax S, Piok T, List E J W, Grimsdale A C, Müllen K. J Am Chem Soc, 2004, 126:6987-6995  doi: 10.1021/ja0398823

    42. [42]

      Guo T, Yu L, Zhao B F, Ying L, Wu H B, Yang W, Cao Y. J Polym Sci, Part A:Polym Chem, 2015, 53(8):1043-1051  doi: 10.1002/pola.v53.8

    43. [43]

      Belton C R, Kanibolotsky A L, Kirkpatrick J, Orofino C, Elmasly S E T, Stavrinou P N, Skabara P J, Bradley D D C. Adv Funct Mater, 2013, 23:2792-2804  doi: 10.1002/adfm.201202644

    44. [44]

      Winfield J M, Van Vooren A, Park M J, Hwang D H, Cornil J, Kim J S, Friend R H. J Chem Phys, 2009, 131(3):035104  doi: 10.1063/1.3177327

    45. [45]

      Campoy-Quiles M, Heliotis G, Xia R, Ariu M, Pintani M, Etchegoin P, Bradley D D C. Adv Funct Mater, 2005, 15(6):925-933  doi: 10.1002/(ISSN)1616-3028

    46. [46]

      Chang S J, Liu X, Lu T T, Liu Y Y, Pan J Q, Jiang Y, Chu S Q, Lai W Y, Huang W. J Mater Chem C, 2017, 5(26):6629-6639  doi: 10.1039/C7TC02008B

    47. [47]

      Ning S Y, Wu Z X, Dong H, Yuan F, Ma L, Yu Y, Jiao B, Hou X. Org Electron, 2014, 15:2052  doi: 10.1016/j.orgel.2014.05.022

    48. [48]

      Keivanidis P E, Howard I A, Friend R H. Adv Funct Mater, 2008, 18(20):3189-3202  doi: 10.1002/adfm.v18:20

    49. [49]

      Dong W, Xue S, Lu P. J Polym Sci, Part A:Polym Chem, 2011, 49(21):4549-4555  doi: 10.1002/pola.v49.21

  • 加载中
    1. [1]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    2. [2]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    3. [3]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    4. [4]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    5. [5]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    9. [9]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    10. [10]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    11. [11]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    12. [12]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    13. [13]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    14. [14]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    15. [15]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    18. [18]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    19. [19]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    20. [20]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

Metrics
  • PDF Downloads(0)
  • Abstract views(134)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return