Citation: Zhang Shuo, Cai Chun-hua, Huang Qi-jing, Lin Jia-ping, Xu Zhan-wen. Effect of Intermolecular Interactions on Self-assembled Structures of Polypeptide-based Copolymer/Polystyrene Derivatives Blends[J]. Acta Polymerica Sinica, ;2018, (1): 109-118. doi: 10.11777/j.issn1000-3304.2018.17223 shu

Effect of Intermolecular Interactions on Self-assembled Structures of Polypeptide-based Copolymer/Polystyrene Derivatives Blends

  • Herein, poly(γ-benzyl-L-glutamate)-b-poly(ethylene glycol) (PBLG-b-PEG) polypeptide-based rod-coil block copolymer, polystyrene homopolymer (PS), and PS derivatives, such as poly(4-acetoxystyrene) (PAS) homopolymer, poly(vinylphenol) (PVPh) homopolymer, and poly(styrene-co-4-acetoxystyrene) (P(S-co-AS)) copolymer with various AS molar contents, were synthesized. The molecular structures (molecular weight, polydispersity index and composition) of the polymers were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H-NMR) and gel permeation chromatography (GPC). Self-assembly behaviors of the polymer blends composed of PBLG-b-PEG copolymer and PS derivatives (including PS homopolymer) were explored. The self-assembled aggregates were prepared by a dialysis method with water used as selective solvent. The morphologies and structures of the formed aggregates were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The influence of intermolecular interaction between polymers (e.g., π-π interaction between PBLG and PS, PAS and PVPh, dipole-dipole interaction between PBLG and PAS, and hydrogen-bonding interaction between PBLG and PVPh) on self-assembly behaviors of the polymer blends was investigated. With the strength of intermolecular interaction increasing in the order of PBLG/PS < PBLG/PAS < PBLG/PVPh, a morphological transition was observed. With relatively weak intermolecular interaction, strip-pattern-spheres were formed in the PBLG-b-PEG/PS blends. For PBLG-b-PEG/PAS blends, as the dipole-dipole interaction was stronger than π-π interaction, the strips disappeared and cavity was observed. As the intermolecular interaction was further enhanced by hydrogen bonding, vesicles were self-assembled in PBLG-b-PEG/PVPh blends. Additionally, the surface morphology of the spherical aggregates was tuned by AS molar content and temperature for PBLG-b-PEG/P(S-co-AS) blends. With increasing AS molar content, the dipole-dipole interaction between PBLG and P(S-co-AS) increased, leading to less regular strip patterns on aggregates surfaces compared with PBLG-b-PEG/PS polymer blends. As temperature increases, the strip patterns became more regular due to the weaker interaction between PBLG and PSAS segments.
  • 加载中
    1. [1]

      Groschel A H, Walther A, Lobling T I, Schacher F H, Schmalz H, Muller A H E. Nature, 2013, 503:247-251  doi: 10.1038/nature12610

    2. [2]

      Groschel A H, Muller A H E. Nanoscale, 2015, 7:11841-11876  doi: 10.1039/C5NR02448J

    3. [3]

      Zhuang Z L, Jiang T, Lin J P, Gao L, Yang C Y, Wang L Q, Cai C H. Angew Chem Int Ed, 2016, 55:12522-12527  doi: 10.1002/anie.201607059

    4. [4]

      Yang C Y, Gao L, Lin J P, Wang L Q, Cai C H, Wei Y H, Li Z B. Angew Chem Int Ed, 2017, 56:5546-5550  doi: 10.1002/anie.201701978

    5. [5]

      Cai C H, Lin J P, Lu Y Q, Zhang Q, Wang L Q. Chem Soc Rev, 2016, 45:5985-6012  doi: 10.1039/C6CS00013D

    6. [6]

      Xu F G, Wu D D, Huang Y J, Wei H, Gao Y, Feng X L, Yan D Y, Mai Y Y. ACS Macro Lett, 2017, 6:426-430  doi: 10.1021/acsmacrolett.7b00031

    7. [7]

      Long Meilin, Zhang Ke, Chen Yongming, Zhu Wen. Acta Polymerica Sinica, 2016, (9):1238-1246
       

    8. [8]

      Lin X, He X H, Hu C Q, Chen Y X, Mai Y Y, Lin S L. Polym Chem, 2016, 7:2815-2820  doi: 10.1039/C6PY00152A

    9. [9]

      Mai Y Y, Eisenberg A. Chem Soc Rev, 2012, 41:5969-5985  doi: 10.1039/c2cs35115c

    10. [10]

      Wang L Q, Lin J P, Zhang X. Polymer, 2013, 54:3427-3442  doi: 10.1016/j.polymer.2013.03.054

    11. [11]

      Zhang Z, Li H D, Huang X Y, Chen D Y. ACS Macro Lett, 2017, 6:580-585  doi: 10.1021/acsmacrolett.7b00296

    12. [12]

      Wu Qiong, Xu Pengxiang, Wang Liquan, Cai Chunhua, Lin Jiaping, Lu Yingqing, Tian Xiaohui. Acta Polymerica Sinica, 2017, (3):471-481
       

    13. [13]

      Xu Jiangfei, Zhang Xi. Acta Polymerica Sinica, 2017, (1):37-49
       

    14. [14]

      Liu Y, Lor C, Fu Q, Pan D, Ding L, Liu J, Lu J. J Phys Chem C, 2010, 114:5767-5772  doi: 10.1021/jp9099545

    15. [15]

      Huang X J, Xiao Y, Lang M D. J Colloid Interf Sci, 2011, 364:92-99  doi: 10.1016/j.jcis.2011.08.028

    16. [16]

      Kakkar D, Mazzaferro S, Thevenot J, Schatz C, Bhatt A, Dwarakanath B S, Singh H, Mishra A K, Lecommandoux S. Macromol Biosci, 2015, 15:124-137  doi: 10.1002/mabi.201400451

    17. [17]

      Shan Y B, Luo T, Peng C, Sheng R L, Cao A M, Cao X Y, Shen M W, Guo R, Tomás H, Shi X Y. Biomaterials, 2012, 33:3025-3035  doi: 10.1016/j.biomaterials.2011.12.045

    18. [18]

      Qi Meiwei, Huang Wei, Xiao Guyu, Zhu Xinyuan, Gao Chao, Zhou Yongfeng. Acta Polymerica Sinica, 2017, (2):214-228
       

    19. [19]

      Xue J X, Guan Z, Lin J P, Cai C H, Zhang W J, Jiang X Q. Small, 2017, 13:1604214  doi: 10.1002/smll.201604214

    20. [20]

      Shao Y, Jia H Y, Cao T Y, Liu D S. Acc Chem Res, 2017, 4:659-668

    21. [21]

      Liu Y J, Zhang Y F, Wang Z Y, Wang J, Wei K C, Chen G S, Jiang M. J Am Chem Soc, 2016, 38:12387-12394

    22. [22]

      Lua B B, Wei L L, Meng G H, Hou J, Liu Z Y, Guo X H. Chinese J Polym Sci, 2017, 35(8):924-938  doi: 10.1007/s10118-017-1947-0

    23. [23]

      Reuther J F, Siriwardane D A, Campos R, Novak B M. Macromolecules, 2015, 48:6890-6899  doi: 10.1021/acs.macromol.5b01564

    24. [24]

      Quan C Y, Wu D Q, Chang C, Zhang G B, Cheng S X, Zhang X Z, Zhuo R X. J Phys Chem C, 2009, 113:11262-11267

    25. [25]

      Dag A, Zhao J C, Stenzel M H. ACS Macro Lett, 2015, 4:579-583  doi: 10.1021/acsmacrolett.5b00163

    26. [26]

      Wu X R, Wu C W, Zhang C. Chinese J Polym Sci, 2017, 35(1):1-24  doi: 10.1007/s10118-017-1871-3

    27. [27]

      He C L, Zhuang X L, Tang Z H, Tian H Y, Chen X S. Adv Healthcare Mater, 2012, 1:48-78  doi: 10.1002/adhm.201100008

    28. [28]

      Deng C, Wu J T, Cheng R, Meng F H, Klok H A, Zhong Z Y. Prog Polym Sci, 2014, 39:330-364  doi: 10.1016/j.progpolymsci.2013.10.008

    29. [29]

      Zhang S S, Li Z B. J Polym Sci, Part B:Polym Phys, 2013, 51:546-555
       

    30. [30]

      Qiu H B, Hudson Z M, Winnik M A, Manners I. Science, 2015, 347:1329-1332  doi: 10.1126/science.1261816

    31. [31]

      Cambridge G, GonzalezAlvarez M J, Guerin G, Manners I, Winnik M A. Macromolecules, 2015, 48:707-716  doi: 10.1021/ma502279b

    32. [32]

      Cai C H, Lin J P, Zhu X Y, Gong S T, Wang X S, Wang L Q. Macromolecules, 2016, 49:15-22  doi: 10.1021/acs.macromol.5b02254

    33. [33]

      Ma Shiying, Wang Rong. Acta Polymerica Sinica, 2016, (8):1030-1041  doi: 10.11777/j.issn1000-3304.2016.16082
       

    34. [34]

      Zhao X J, Yu X L, Lee Y I, Liu H G. Langmuir, 2016, 32:11819-11826  doi: 10.1021/acs.langmuir.6b02396

    35. [35]

      Tanaka H, Hasegawa H, Hashimoto T. Macromolecules, 1991, 24:240-251  doi: 10.1021/ma00001a037

    36. [36]

      Hashimoto T, TanakaH, Hasegawa H. Macromolecules, 1990, 23:4378-4386  doi: 10.1021/ma00222a009

    37. [37]

      Salim N V, Guo Q P. J Phys Chem B, 2011, 115:9528-9536
       

    38. [38]

      Wang X J, Chen J H, Hong K L, Mays J W. ACS Macro Lett, 2012, 1:743-747  doi: 10.1021/mz300192u

    39. [39]

      Hickey R J, Luo Q J, Park S J. ACS Macro Lett, 2013, 2:805-808  doi: 10.1021/mz400301g

    40. [40]

      Hoheisel T N, Hur K, Wiesner U B. Prog Polym Sci, 2015, 40:3-32  doi: 10.1016/j.progpolymsci.2014.10.002

    41. [41]

      Wang Jian, Lu Yuyuan, Xu Yuci, Ruan Yongjin, Li Liangyi, An Lijia. Acta Polymerica Sinica, 2016, (3):271-287  doi: 10.11777/j.issn1000-3304.2016.15340
       

    42. [42]

      Looser J E, Lohmann E, Jiang Y M, Reineke T M, Lodge T P. Macromolecules, 2016, 49:6644-6654  doi: 10.1021/acs.macromol.6b01408

    43. [43]

      Huang C W, Mohamed M G, Zhu C Y, Kuo S W. Macromolecules, 2016, 49:5374-5385  doi: 10.1021/acs.macromol.6b01060

    44. [44]

      Kuo S W, Chen C J. Macromolecules, 2011, 44:7315-7326  doi: 10.1021/ma200721e

    45. [45]

      Hsu C H, Kuo S W, Chen J K, Ko F H, Liao C S, Chang F C. Langmuir, 2008, 24:7727-7734  doi: 10.1021/la703960g

    46. [46]

      Osuji C, Chao C Y, Bita I, Ober C K, Thomas E L. Adv Funct Mater, 2002, 12:753-758  doi: 10.1002/adfm.200290003

    47. [47]

      Zhang Y Y, Li Y M, Liu W G. Adv Funct Mater, 2015, 25:471-480  doi: 10.1002/adfm.201401989

    48. [48]

      Zhang X, Lin J Y, Wang L Q, Zhang L S, Lin J P, Gao L. Polymer, 2015, 78:69-80  doi: 10.1016/j.polymer.2015.09.065

    49. [49]

      Dehghan A, Shi A C. Macromolecules, 2013, 46:5796-5805  doi: 10.1021/ma4008576

    50. [50]

      Duan C, Li W H, Qiu F, Shi A C. ACS Macro Lett, 2017, 6:257-261  doi: 10.1021/acsmacrolett.7b00058

    51. [51]

      Palanisamy A, Guo Q. Chem Commun, 2015, 51:11100-11103  doi: 10.1039/C5CC03714J

    52. [52]

      Yang H, Zhang C, Li C, LiuY, An Y, Ma R J, Shi L Q. Biomacromolecules, 2015, 16:1372-1381  doi: 10.1021/acs.biomac.5b00155

    53. [53]

      Gong Ying, Yuan Qian, Nie Jing, Yang Shuguang. Acta Polymerica Sinica, 2017, (6):967-973
       

    54. [54]

      Cai C H, Li Y L, Lin J P, Wang L Q, Lin S L, Wang X S, Jiang T. Angew Chem Int Ed, 2013, 52:7732-7736  doi: 10.1002/anie.v52.30

    55. [55]

      Zhu X Y, Guan Z, Lin J P, Cai C H. Sci Rep, 2016, 6:29796  doi: 10.1038/srep29796

    56. [56]

      Zhang S, Cai C H, Guan Z, Lin J P, Zhu X Y. Chinese Chem Lett, 2017, 28:839-844  doi: 10.1016/j.cclet.2016.12.040

    57. [57]

      Kuo S W, Chen C J. Macromolecules, 2012, 45:2442-2452  doi: 10.1021/ma300061w

    58. [58]

      Sasaki S, Uzawa T. Polym Bull, 1986, 6:517-524
       

    59. [59]

      Matyjaszewski K, Xia J. Chem Rev, 2001, 101:2921-2990  doi: 10.1021/cr940534g

    60. [60]

      Yu Y S, Zhang L F, Eisenberg A. Macromolecules, 1998, 31:1144-1154  doi: 10.1021/ma971254g

    61. [61]

      Liu F T, Eisenberg A. J Am Chem Soc, 2003, 125:15059-15064  doi: 10.1021/ja038142r

    62. [62]

      Zhang Shuo, Li Qing, Lin Jiaping, Cai Chunhua, Wang Liquan. Acta Polymerica Sinica, 2017, (2):294-305
       

    63. [63]

      LosikM, Kubowicz S, Smarsly B, Schlaad H. Eur Phys J E, 2004, 15:407-411  doi: 10.1140/epje/i2004-10057-5

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    8. [8]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    9. [9]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    10. [10]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    12. [12]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    15. [15]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    16. [16]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    17. [17]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    18. [18]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    19. [19]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    20. [20]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

Metrics
  • PDF Downloads(0)
  • Abstract views(111)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return