Citation: Zhang Chong, Lu Hua. Efficient Synthesis and Application of Protein-Poly(α-amino acid) Conjugates[J]. Acta Polymerica Sinica, ;2018, (1): 21-31. doi: 10.11777/j.issn1000-3304.2018.17204 shu

Efficient Synthesis and Application of Protein-Poly(α-amino acid) Conjugates

  • Corresponding author: Lu Hua, chemhualu@pku.edu.cn
  • Received Date: 28 July 2017
    Revised Date: 22 September 2017

  • Protein-polymer conjugates are important therapeutics for various diseases. There are currently two major challenges in this field: one is the search of new biodegradable polymers beyond traditional PEGylation, and the other is to develop highly efficient and site-specific conjugation strategy. Poly(α-amino acid)s (PαAAs) are biodegradable and biocompatible polymers with tunable properties and numerous functions, making them promising candidates for protein modification. In this review, we summarize our recent progresses in protein-PαAAs conjugates. Specifically, we discuss our developments in: (1) Recent developments in the controlled ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs), including amine-based initiators, organometallic initiators, organosilicon amines initiators and sulfide-based initiators. For instance, trimethylsilyl phenylsulfide (PhSTMS) is a novel initiator for controlled ROP of NCAs. It exhibits higher nucleophilicity than conventional amine-based initiator, and thus affords considerably higher chain initiation rate to ensure a more controlled polymerization. Moreover, this initiator is well-tolerated to various functional groups. (2) In situ functionalization of PαAAs for site-specific protein conjugation, and construction of various topological structures. Using PhSTMS initiator, it in situ generates a reactive phenyl thioester group at one end of the PαAAs, which can be used for protein N-terminus conjugation via native chemical ligation (NCL); moreover, ROP of glycine NCA yields oligoglycine at the other end of PαAAs, which can be used for C-terminus protein conjugation via sortase-A mediated ligation (SML). More interestingly, combinatory use of the two methods can construct various topological protein-PαAA conjugates including the head-to-tail circular conjugates. (3) Development of functional PαAAs for potential protein conjugation. Various functional PαAAs have been developed as delivery materials or hydrogels. To further expand the arsenal of PαAAs for potential modulation of protein functions, PαAAs that mimic protein post-translational modifications (PTM) are synthesized; On the other hand, a series of multiple stimuli-responsive PαAAs are also produced. These PαAAs show interesting enzyme, light, and/or thermal responsiveness, which could be potentially harnessed for modulation of protein functions in the future.
  • 加载中
    1. [1]

      Swinney D C, Anthony J. Nat Rev Drug Discov, 2011, 10(7):507-519  doi: 10.1038/nrd3480

    2. [2]

      Abuchowski A, Vanes T, Palczuk N C, Davis F F. J Biol Chem, 1977, 252(11):3578-3581

    3. [3]

      Alconcel S N S, Baas A S, Maynard H D. Polym Chem, 2011, 2(7):1442-1448  doi: 10.1039/c1py00034a

    4. [4]

      Schellekens H, Hennink W E, Brinks V. Pharm Res, 2013, 30(7):1729-1734  doi: 10.1007/s11095-013-1067-7

    5. [5]

      Gauthier M A, Klok H A. Polym Chem, 2010, 1(9):1352-1373  doi: 10.1039/c0py90001j

    6. [6]

      Kochendoerfer G G. Curr Opin Chem Biol, 2005, 9(6):555-560  doi: 10.1016/j.cbpa.2005.10.007

    7. [7]

      Pelegri-O'Day E M, Lin E W, Maynard H D. J Am Chem Soc, 2014, 136(41):14323-14332  doi: 10.1021/ja504390x

    8. [8]

      Knop K, Hoogenboom R, Fischer D, Schubert U S. Angew Chem Int Ed, 2010, 49(36):6288-6308  doi: 10.1002/anie.200902672

    9. [9]

      Bontempo D, Maynard H D. J Am Chem Soc, 2005, 127(18):6508-6509  doi: 10.1021/ja042230+

    10. [10]

      Gao W, Liu W, Mackay J A, Zalutsky M R, Toone E J, Chilkoti A. Proc Natl Acad Sci USA, 2009, 106(36):15231-15236  doi: 10.1073/pnas.0904378106

    11. [11]

      Boyer C, Bulmus V, Liu J, Davis T P, Stenzel M H, Barner-Kowollik C. J Am Chem Soc, 2007, 129(22):7145-7154  doi: 10.1021/ja070956a

    12. [12]

      Hu J, Zhao W, Gao Y, Sun M, Wei Y, Deng H, Gao W. Biomaterials, 2015, 47:13-19  doi: 10.1016/j.biomaterials.2015.01.002

    13. [13]

      Cho H, Daniel T, Buechler Y J, Litzinger D C, Maio Z, Putnam A M H, Kraynov V S, Sim B C, Bussell S, Javahishvili T, Kaphle S, Viramontes G, Ong M, Chu S, Becky G C, Lieu R, Knudsen N, Castiglioni P, Norman T C, Axelrod D W, Hoffman A R, Schultz P G, DiMarchi R D, Kimme B E. Proc Natl Acad Sci USA, 2011, 108(22):9060-9065  doi: 10.1073/pnas.1100387108

    14. [14]

      Kochendoerfer G G, Chen S Y, Mao F, Cressman S, Traviglia S, Shao H Y, Hunter C L, Low D W, Cagle E N, Carnevali M, Gueriguian V, Keogh P J, Porter H, Stratton S M, Wiedeke M C, Wilken J, Tang J, Levy J J, Miranda L P, Crnogorac M M, Kalbag S, Botti P, Schindler-Horvat J, Savatski L, Adamson J W, Kung A, Kent S B H, Bradburne J A. Science, 2003, 299:884-887  doi: 10.1126/science.1079085

    15. [15]

      Dumas A, Spicer C D, Gao Z, Takehana T, Lin Y A, Yasukohchi T, Davis B G. Angew Chem Int Ed, 2013, 52(14):3916-3921  doi: 10.1002/anie.v52.14

    16. [16]

      Zhang B, Xu H, Chen J, Zheng Y, Wu Y, Si L, Wu L, Zhang C, Xia G, Zhang L, Zhou D. Acta Biomater, 2015, 19:100-111  doi: 10.1016/j.actbio.2015.03.002

    17. [17]

      Biedermann F, Rauwald U, Zayed J M, Scherman O A. Chem Sci, 2011, 2(2):279-286  doi: 10.1039/C0SC00435A

    18. [18]

      Cao L, Shi X, Cui Y, Yang W, Chen G, Yuan L, Chen H. Polym Chem, 2016, 7(32):5139-5146  doi: 10.1039/C6PY00882H

    19. [19]

      Barz M, Luxenhofer R, Zentel R, Vicent M J. Polym Chem, 2011, 2(9):1900-1918  doi: 10.1039/c0py00406e

    20. [20]

      Merrifield R B. J Am Chem Soc, 1963, 85(14):2149-2154  doi: 10.1021/ja00897a025

    21. [21]

      Tao Youhua. Acta Polymerica Sinica, 2016, (9):1151-1159
       

    22. [22]

      Huang J, Heise A. Chem Soc Rev, 2013, 42(17):7373-7390  doi: 10.1039/c3cs60063g

    23. [23]

      Wang Mingzhi, Du Jianzhong. Acta Polymerica Sinica, 2014, (9):1183-1194
       

    24. [24]

      Cheng J, Deming T J. Topics in Current Chemistry. Springer Berlin Heidelberg, 2012, 310: 1-26

    25. [25]

      Leuchs H. Chem Ber, 1906, 39:857-861  doi: 10.1002/(ISSN)1099-0682

    26. [26]

      Deming T J. Nature, 1997, 390(6658):386-389  doi: 10.1038/37084

    27. [27]

      Deming T J. J Am Chem Soc, 1998, 120(17):4240-4241  doi: 10.1021/ja980313i

    28. [28]

      Dimitrov I, Schlaad H. Chem Commun, 2003, 23:2944-2945
       

    29. [29]

      Conejos-Sánchez I, Duro-Castano A, Birke A, Barz M, Vicent M J. Polym Chem, 2013, 4(11):3182-3186  doi: 10.1039/c3py00347g

    30. [30]

      Peng Y, Lai S, Lin C. Macromolecules, 2008, 41(10):3455-3459  doi: 10.1021/ma7025836

    31. [31]

      Peng H, Ling J, Shen Z. J Polym Sci, Part A:Polym Chem, 2012, 50(6):1076-1085  doi: 10.1002/pola.v50.6

    32. [32]

      Aliferis T, Iatrou H, Hadjichristidis N. Biomacromolecules, 2004, 5(5):1653-1656  doi: 10.1021/bm0497217

    33. [33]

      Zhao W, Gnanou Y, Hadjichristidis N. Biomacromolecules, 2015, 16(4):1352-1357  doi: 10.1021/acs.biomac.5b00134

    34. [34]

      Zhao W, Gnanou Y, Hadjichristidis N. Polym Chem, 2015, 6(34):6193-6201  doi: 10.1039/C5PY00874C

    35. [35]

      Li P, Dong C. ACS Macro Lett, 2017, 6(3):292-297  doi: 10.1021/acsmacrolett.7b00167

    36. [36]

      Lu H, Cheng J. J Am Chem Soc, 2007, 129(46):14114-14115  doi: 10.1021/ja074961q

    37. [37]

      Lu H, Cheng J. J Am Che Soc, 2008, 130(38):12562-12563  doi: 10.1021/ja803304x

    38. [38]

      Lu H, Wang J, Lin Y, Cheng J. J Am Chem Soc, 2009, 131(38):13582-13583  doi: 10.1021/ja903425x

    39. [39]

      Bai Y, Lu H, Ponnusamy E, Cheng J. Chem Commun, 2011, 47(38):10830-10832  doi: 10.1039/c1cc13531g

    40. [40]

      Baumgartner R, Fu H, Song Z, Lin Y, Cheng J. Nat Chem, 2017, 9(7):614-622  doi: 10.1038/nchem.2712

    41. [41]

      Yuan J, Sun Y, Wang J, Lu H. Biomacromolecules, 2016, 17(3):891-896  doi: 10.1021/acs.biomac.5b01588

    42. [42]

      Grotzky A, Manaka Y, Kojima T, Walde P. Biomacromolecules, 2010, 12(1):134144

    43. [43]

      Talelli M, Vicent M J. Biomacromolecules, 2014, 15(11):4168-4177  doi: 10.1021/bm5011883

    44. [44]

      Hou Y, Yuan J, Zhou Y, Yu J, Lu H. J Am Chem Soc, 2016, 138(34):10995-11000  doi: 10.1021/jacs.6b05413

    45. [45]

      Deng C, Wu J, Cheng R, Meng F, Klok H A, Zhong Z. Prog Polym Sci, 2014, 39(2):330-364  doi: 10.1016/j.progpolymsci.2013.10.008

    46. [46]

      Lu H, Wang J, Song Z, Yin L, Zhang Y, Tang H, Tu C, Lin Y, Cheng J. Chem Commun, 2014, 50(2):139-155  doi: 10.1039/C3CC46317F

    47. [47]

      Walsh C T, Garneau-Tsodikova S, Gatto G J. Angew Chem Int Ed, 2005, 44(45):7342-7372  doi: 10.1002/(ISSN)1521-3773

    48. [48]

      Kramer J R, Deming T J. Polym Chem, 2014, 5(3):671-682  doi: 10.1039/C3PY01081C

    49. [49]

      Pratt M R, Bertozzi C R. Chem Soc Rev, 2005, 34(1):58-68  doi: 10.1039/b400593g

    50. [50]

      Pati D, Shaikh A Y, Das S, Nareddy P K, Swamy M J, Hotha S, Gupta S S. Biomacromolecules, 2012, 13(5):1287-1295  doi: 10.1021/bm201813s

    51. [51]

      Rubin C S, Rosen O M. Annu Rev Biochem, 1975, 44(1):831-887  doi: 10.1146/annurev.bi.44.070175.004151

    52. [52]

      Sun Y, Hou Y, Zhou X, Yuan J, Wang J, Lu H. ACS Macro Lett, 2015, 4(9):1000-1003  doi: 10.1021/acsmacrolett.5b00429

    53. [53]

      Li S, Hou Y, Hu Y, Yu J, Wei W, Lu H. Biomater Sci, 2017, 5:1558-1566  doi: 10.1039/C6BM00935B

    54. [54]

      Hou Y, Wang Y, Wang R, Bao W, Xi X, Sun Y, Lu H. ACS Appl Mater Interfaces, 2017, 9(21):17757-17768  doi: 10.1021/acsami.7b03686

    55. [55]

      Shen Y, Fu X, Fu W, Li Z. Chem Soc Rev, 2015, 44(3):612-622  doi: 10.1039/C4CS00271G

    56. [56]

      Yuan Jingsong, Lu Hua. Polym Bull, 2015, (9):210-216
       

    57. [57]

      Chen C, Wang Z, Li Z. Biomacromolecules, 2011, 12(8):2859-2863  doi: 10.1021/bm200849m

    58. [58]

      Fu X, Ma Y, Sun J, Li Z. Chinese J Polym Sci, 2016, 34(12):1436-1447  doi: 10.1007/s10118-016-1861-x

    59. [59]

      Zhang S, Chen C, Li Z. Chinese J Polym Sci, 2013, 2(31):201-210
       

    60. [60]

      Ge C, Liu S, Liang C, Ling Y, Tang H. Polym Chem, 2016, 7(38):5978-5987  doi: 10.1039/C6PY01287F

    61. [61]

      Shi F, Ding J, Xiao C, Zhuang X, He C, Chen L, Chen X. J Mater Chem, 2012, 22(28):14168-14179  doi: 10.1039/c2jm32033a

    62. [62]

      Wang K, Luo G, Liu Y, Li C, Cheng S, Zhuo R, Zhang X. Polym Chem, 2012, 3(4):1084-1090  doi: 10.1039/c2py00600f

    63. [63]

      Kramer J R, Deming T J. J Am Chem Soc, 2012, 134(9):4112-4115  doi: 10.1021/ja3007484

    64. [64]

      Chen P, Qiu M, Deng C, Meng F, Zhang J, Cheng R, Zhong Z. Biomacromolecules, 2015, 16(4):1322-1330  doi: 10.1021/acs.biomac.5b00113

    65. [65]

      Lee E S, Oh K T, Kim D, Youn Y S, Bae Y H. J Control Release, 2007, 123(1):19-26  doi: 10.1016/j.jconrel.2007.08.006

    66. [66]

      Rodríguez-Hernández J, Lecommandoux S. J Am Chem Soc, 2005, 127(7):2026-2027  doi: 10.1021/ja043920g

    67. [67]

      Bae Y, Fukushima S, Harada A, Kataoka K. Angew Chem Int Ed, 2003, 42(38):4640-4643  doi: 10.1002/(ISSN)1521-3773

    68. [68]

      Kotharangannagari V K, Sánchez-Ferrer A, Ruokolainen J, Mezzenga R. Macromolecules, 2011, 44(12):4569 -4573  doi: 10.1021/ma2008145

    69. [69]

      Liu G, Dong C. Biomacromolecules, 2012, 13(5):1573-1583  doi: 10.1021/bm300304t

    70. [70]

      Yin L, Tang H, Kim K H, Zheng N, Song Z, Gabrielson N P, Lu H, Cheng J. Angew Chem Int Ed, 2013, 52(35):9182-9186  doi: 10.1002/anie.201302820

    71. [71]

      Xiong W, Fu X, Wan Y, Sun Y, Li Z, Lu H. Polym Chem, 2016, 7(41):6375-6382  doi: 10.1039/C6PY01364C

  • 加载中
    1. [1]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    2. [2]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    3. [3]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    4. [4]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    5. [5]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    6. [6]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    7. [7]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    8. [8]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    9. [9]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    10. [10]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    18. [18]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    19. [19]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    20. [20]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

Metrics
  • PDF Downloads(0)
  • Abstract views(108)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return