Citation: Yi-xin Liu, Er-qiang Chen. Thickening Kinetics of Monolayer Crystals of Low Molecular Weight Poly(ethylene oxide) Fractions on Mica Surfaces[J]. Acta Polymerica Sinica, ;2018, 0(9): 1212-1220. doi: 10.11777/j.issn1000-3304.2017.17333 shu

Thickening Kinetics of Monolayer Crystals of Low Molecular Weight Poly(ethylene oxide) Fractions on Mica Surfaces

  • Corresponding author: Yi-xin Liu, 2754093878@qq.com
  • Received Date: 18 December 2017
    Revised Date: 16 January 2018
    Available Online: 1 March 2018

  • The thickening of monolayer crystals of low molecular weight poly(ethylene oxide) (PEO) fractions on mica surface are in situ monitored by an atomic force microscopy (AFM) coupled with a hot stage. Two PEO fractions, with different molecular weights (HPEO2K, Mn = 2000; HPEO3K, Mn = 3000), have been examined. It is found that thickening domains continuously emerge when smooth once-folded-chain crystals are annealed isothermally below their melting temperature. A single thickening domain can grow in thickness and lateral size simutaneously. The growth of the thickness of the thickening domain follows a sigmoidal curve and depends significantly on the annealing temperature. It is found that the thickness of the thickening domain grows linearly with the logarithm of time. Such linear relation implies that its underlying mechanism should be nucleation and growth, as confirmed by a theoretical derivation of the thickness of the thickening domain as a function of time based on this mechanism. For each annealing temperature, a linear regression between the thickness of the thickening domain and the logarithm of time is performed and the obtained reciprocal of the slope linearly depends on the reciprocal of the annealing temperature. Then the surface free energy of the lateral surface of the folded-chain crystals can be inferred from the relation between the reciprocal of the slope and the annealing temperature. In this study, the value of the lateral surface free energy is found to be 1.25 and 1.22 kJ/mol for HPEO2K and HPEO3K, respectively. These values agree well with each other and also with reported values, which further validates our proposed mechanism. The lateral size of the thickening domain grows linearly with time as long as its thickeness approaches the extended-chain crystal. Such type of growth resembles the direct growth of the polymer crystals from the melt. However, its reltation between the growth rate and the annealing temperature is quite different from that of the growth of polymer crystals: the growth rate increases with the annealing temperature in the thickening case while it decreases with the crystallization temperature in the crystallization case. It indicates that there is an activation process rather than a nucleation process during thickening, which has been attributed to the chain sliding diffusion within the folded-chain crystals.
  • 加载中
    1. [1]

      Cheng S Z D. Phase Transitions in Polymers. The Role of Metastable States. Amsterdam: Elsevier Science, 2008. 78 – 91

    2. [2]

      Keller A, Cheng S Z D. Polymer, 1998, 39: 4461 − 4487  doi: 10.1016/S0032-3861(97)10320-2

    3. [3]

      Fischer E W, Schmidt G F. Angew Chem Int Ed, 1962, 1: 488 − 499  doi: 10.1002/(ISSN)1521-3773

    4. [4]

      Wunderlich B. Macromolecular Physics Vol. 2. New York: Academic Press, 1976. 348 – 425

    5. [5]

      Sanchez I C, Peterlin A, Eby R K, McCrackin, F L. J Appl Phys, 1974, 45: 4216 − 4219  doi: 10.1063/1.1663038

    6. [6]

      Sanchez I C, Colson J P, Eby R K. J Appl Phys, 1973, 44: 4332 − 4339  doi: 10.1063/1.1661961

    7. [7]

      Kovacs A J, Straupe C, Gonthier A. J Polym Sci, Polym Symp, 1977, 59: 31 − 54

    8. [8]

      Kovacs A J, Gonthier A, Straupe C. J Polym Sci, Polym Symp, 1975, 50: 283 − 325

    9. [9]

      Hikosaka M, Amano K, Rastogi S, Keller A. Macromolecules, 1997, 30: 2067 − 2074  doi: 10.1021/ma960746a

    10. [10]

      Reiter G, Sommer J U. Polymer Crystallization: Observations, Concepts and Interpretations. Berlin Heidelberg: Springer-Verlag, 2003. Vol. 606, 131 – 152

    11. [11]

      Zhai X, Zhang G, Ma Z, Tang X, Wang W. Macromol Chem Phys, 2007, 208: 651 − 657  doi: 10.1002/(ISSN)1521-3935

    12. [12]

      Zhai X M, Wang W, Ma Z P, Wen X J, Yuan F, Tang X F, He B L. Macromolecules, 2005, 38: 1717 − 1722  doi: 10.1021/ma047764+

    13. [13]

      Liu Y X, Li J F, Zhu D S, Chen E Q, Zhang H D. Macromolecules, 2009, 42: 2886 − 2890  doi: 10.1021/ma802806q

    14. [14]

      Wang M, Gao H, Zha L, Chen E Q, Hu W. Macromolecules, 2013, 46: 164 − 171  doi: 10.1021/ma301926p

    15. [15]

      Peterlin A. J Polym Sci, Part B: Polym Phys, 1963, 1: 279 − 284  doi: 10.1002/pol.1963.110010603

    16. [16]

      Peterlin A. Polymer, 1965, 6: 25 − 34  doi: 10.1016/0032-3861(65)90076-5

    17. [17]

      Ichida T, Tsuji M, Murakami S, Kawaguchi A, Katayama K. Colloid Polym Sci, 1985, 263: 293 − 300  doi: 10.1007/BF01412244

    18. [18]

      Takahashi Y Tadokoro H. Macromolecules, 1973, 6: 672 − 675  doi: 10.1021/ma60035a005

    19. [19]

      Turnbull D, Fisher J C. J Chem Phys, 1949, 17: 71 − 73  doi: 10.1063/1.1747055

    20. [20]

      Liu Y X, Zhong L W, Su S Z, Chen E Q. Macromolecules, 2011, 44: 8819 − 8828  doi: 10.1021/ma201885g

    21. [21]

      Buckley C P, Kovacs A J. Colloid Polym Sci, 1976, 254: 695 − 715  doi: 10.1007/BF01643767

    22. [22]

      Point J J, Kovacs A J. Macromolecules, 1980, 13: 399 − 409  doi: 10.1021/ma60074a038

    23. [23]

      Koutsky J A, Walton A G, Baer E. J Appl Phys, 1967, 38: 1832 − 1839  doi: 10.1063/1.1709769

    24. [24]

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    3. [3]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    16. [16]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    17. [17]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    18. [18]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    19. [19]

      Xuewei Qian Xingwen Sun Houjin Li Zhanxiang Liu Yuan Zheng Lin Wu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Shuyong Zhang Jianrong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Recrystallization Experiments. University Chemistry, 2025, 40(5): 66-75. doi: 10.12461/PKU.DXHX202503126

    20. [20]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

Metrics
  • PDF Downloads(0)
  • Abstract views(156)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return