Citation: Dong-yang Chen, Cheng Liu, Jin-yan Wang, Chun-yue Pan, Gui-peng Yu, Xi-gao Jian. Research Progress on the Electrochemical Application of Nanoporous Organic Polymers[J]. Acta Polymerica Sinica, ;2018, 0(5): 559-570. doi: 10.11777/j.issn1000-3304.2017.17298 shu

Research Progress on the Electrochemical Application of Nanoporous Organic Polymers

  • Corresponding author: Gui-peng Yu, gilbertyu@csu.edu.cn
  • Received Date: 27 October 2017
    Revised Date: 28 November 2017
    Available Online: 1 March 2018

  • As new emerged polymer materials, nanoporous organic polymers (NOPs), derived completely from light elements, are featured by high surface areas, low skeleton densities, and good chemical and thermal stabilities, which have led to numerous potential applications in heterogeneous catalysis, gas storage, and separation. Furthermore, their versatile synthetic methodology, controllable pore structure and easy modification significantly accelerate their development. Recently, the applications of NOPs targeted for organic electronic devices and solid state sensors have drawn increasing attention. The study of NOP-based electrochemical sensor technologies has become a very active and robust research area, and is expected to provide high-performance technologies for electrode materials, electrocatalytic carrier, and electrochemical detection, etc. One potential advantage of these materials is derived from their porous robust frameworks with high accessible surface areas, which enable structural preservation and efficient metal uptake and diffusion. However, the weak electron transport and wettability of NOPs somewhat limit their practical application in electrochemistry. In response, novel strategies have been developed to enhance their conductivity and wettability, including the incorporation of heteroatoms, extending of the skeleton conjugation, and the introduction of metal sites into the porous networks. Especially, the introduction of heteroatoms into the electrode materials is the mostly utilized technology, because it not only enables the increase in conductivity, wettablity and electroactive surface area of the electrodes, but also endows the electrodes with high pseudocapacitance. Furthermore, pore-size engineering, i.e., enhancing microporosity and constructing hierarchical structure, is crucial to improve the electrochemical performance. Hierarchically porous materials used as electrode matrices appear to be much more favorable for mass loading and ion diffusion or transport, endowing them with technological importance for applications in energy storage and sensor applications. This study summarizes recent research progress of NOPs in electrochemical applications, focuses on rational design, pore engineering and the structure-electrochemical property relationship, and also prospects their future development.
  • 加载中
    1. [1]

      Cote A P, Benin A I, Ockwig N W, O’Keeffe M , Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166-1170  doi: 10.1126/science.1120411

    2. [2]

      Budd P M, Ghanem B S, Makhseed S, Mckeown N B, Msayib K J, Tattershall C E. Chem Commun, 2004, 2(2): 230-231

    3. [3]

      Davankov V A, Tsyurupa M P. React Polym, 1990, 13(1-2): 27-42  doi: 10.1016/0923-1137(90)90038-6

    4. [4]

      Jiang J X, Su F, Trewin A, Wood C D, Campbell N L, Niu H. Angew Chem, 2008, 47(7): 8574-8578

    5. [5]

      Xie Y, Wang T T, Liu X H, Zou K, Deng W Q. Nat Commun, 2013, 4(3): 1960

    6. [6]

      Carta M, Malpass-Evans R, Croad M, Rogan Y, Jansen J C, Bernardo P, Bazzarelli F, McKeown N B. Science, 2013, 339(6117): 303-307  doi: 10.1126/science.1228032

    7. [7]

      Lu W G, Sculley J P, Yuan D Q, Krishna R, Zhou H C. J Phys Chem C, 2013, 117(8): 4057−4061  doi: 10.1021/jp311512q

    8. [8]

      Ghanem B S, Swaidan R, Eric L, Pinnau I. Adv Mater, 2014, 26(22): 3688-3692  doi: 10.1002/adma.v26.22

    9. [9]

      Yoon S M, Srirambalaji R, Kim K. Chem Rev, 2012, 112(2): 1196-1231  doi: 10.1021/cr2003147

    10. [10]

      Lin S, Diercks C S, Zhang Y B, Kornienko N, Nichols E M, Zhao Y B, Paris A R, Kim D, Yang P D, Yaghi O M, Chang C J. Science, 2015, 349(6253): 1208-1213  doi: 10.1126/science.aac8343

    11. [11]

      Xu Y, Jiang D L. Chem Commun, 2014, 50(21): 2781-2783  doi: 10.1039/c3cc49669d

    12. [12]

      Guo J, Xu Y H, Jin S B, Chen L, Kaji T, Honsho Y, Addicoat M A, Kim J, Saeki A, Ihee H, Seki S, Irle S, Hiramoto M, Gao J, Jiang D L. Nat Commun, 2013, 4(3776): 2736-2744

    13. [13]

      Li P F, Schon T B, Seferos D S. Angew Chem Int Ed, 2015, 54(32): 9361-9366  doi: 10.1002/anie.201503418

    14. [14]

      Liu X, Xu Y, Jiang D. J Am Chem Soc, 2012, 134(25): 8738-8741

    15. [15]

      Das G, Biswal B P, Kandambeth S, Venkatesh V, Kaur G, Addicoat M, Thomas H, Sandeep V, Banerjee R. Chem Sci, 2015, 6(7): 3931-3939  doi: 10.1039/C5SC00512D

    16. [16]

      Zhao J, Lai H W, Lyu Z Y, Jiang Y F, Xie K, Wang X Z, Wu Q, Yang L J, Jin Z, Ma Y W, Liu J, Hu Z. Adv Mater, 2015, 27(23): 3541-3545  doi: 10.1002/adma.v27.23

    17. [17]

      Wang S, Wang Q Y, Shao P P, Han Y Z, Gao X, Ma L, Yuan S, Ma X J, Zhao J W, Feng X, Wang B. J Am Chem Soc, 2017, 139(12): 4258-4262  doi: 10.1021/jacs.7b02648

    18. [18]

      Lee J S M, Wu T H, Alston B M, Briggs M E, Hasell T, Hu C C, Cooper A I. J Mater Chem A, 2016, 4(20): 7665-7673  doi: 10.1039/C6TA02319C

    19. [19]

      Chandra S, Chowdhury D R, Addicoat M, Heine T, Paul A, Banerjee R. Chem Mater, 2017, 29(5): 2074-2080  doi: 10.1021/acs.chemmater.6b04178

    20. [20]

      Xu F, Chen X, Tang Z W, Wu D C, Fu R W, Jiang D L. Chem Commun, 2014, 50(37): 4788-4790  doi: 10.1039/C4CC01002G

    21. [21]

      Xu F, Jin S B, Zhong H, Wu D C, Yang X Q, Chen X, Wei H, Fu R W, Jiang D L. Sci Rep, 2015, 5: 8225-8230.  doi: 10.1038/srep08225

    22. [22]

      Yang D H, Yao Z Q, Wu D H, Zhang Y H, Zhou Z, Bu X H. J Mater Chem A, 2016, 4(47): 18621-18627.  doi: 10.1039/C6TA07606H

    23. [23]

      Yang X F, Dong B, Zhang H Z, Ge R, Gao Y A, Zhang H M. RSC Adv, 2015, 5(105): 86137-86143.  doi: 10.1039/C5RA16235A

    24. [24]

      Ghazi Z A, Zhu L Y, Wang H, Naeem A, Khattak A M, Liang B, Khan N A, Wei Z X, Li L S, Tang Z Y. Adv Energy Mater, 2016, 6(24): 1601250.  doi: 10.1002/aenm.201601250

    25. [25]

      Zheng J, Tian J, Wu D, Gu M, Xu W, Wang C, Gao F, Zhang J G, Liu J, Xiao J. Nano Lett, 2014, 14(5): 2345-2352.  doi: 10.1021/nl404721h

    26. [26]

      Fang Y, Lv Y Y, Che R C, Wu H Y, Zhang X H, Gu D, Zheng G F, Zhao D Y. J Am Chem Soc, 2013,135(4): 1524-1530.  doi: 10.1021/ja310849c

    27. [27]

      Shrma V, Khilari S, Pradhan D, Mohanty P. RSC Adv, 2016, 6(61): 56421-56428.  doi: 10.1039/C6RA06252K

    28. [28]

      Hu F Y, Wang J Y, Hu S, Li L F, Wang G, Qiu J S, Jian X G. Nanoscale, 2016, 8(36): 16323-16331.  doi: 10.1039/C6NR05146D

    29. [29]

      Lu G L, Zhu Y L, Xu K L, Jin Y H, Ren Z J, Liu Z N, Zhang W. Nanoscale, 2015, 7(43): 18271-18277.  doi: 10.1039/C5NR05324B

    30. [30]

      Chandra S, Kundu T, Kandambeth S, Babarao R, Marathe Y, Kunjir S M, Banerjee R. J Am Chem Soc, 2014, 136(18): 6570-6573.  doi: 10.1021/ja502212v

    31. [31]

      Mullangi D, Dhavale V, Shalini S, Nandi shyamapada, Collins S, Woo T, Kurungot S, Vaidhyanathan R. Adv Energy Mater, 2016, 6(13): 1600110.  doi: 10.1002/aenm.201600110

    32. [32]

      Nandi S, Singh S K, Mullangi D, Illathvalappil R, George L, Vinod C P, Kurungot S, Vaidhyanathan R. Adv Energy Mater, 2016, 6(24): 1601189.  doi: 10.1002/aenm.201601189

    33. [33]

      Palma-Cando A, Scherf U. ACS Appl Mater Interfaces, 2015, 7(21): 11127-11133.  doi: 10.1021/acsami.5b02233

    34. [34]

      Zhuang X D, Gehrig D, Forler N, Liang H W, Wagner M, Hansen M R, Laquai F, Zhang F, Feng X L. Adv Mater, 2015, 27(25): 3789-3796.  doi: 10.1002/adma.v27.25

    35. [35]

      Deblase C R, Silberstein E S, Truong T T, Abruna H D, Dichtel W R. J Am Chem Soc, 2013, 135(34): 16821-16824.

    36. [36]

      Khattak A M, Ghazi Z A, Liang B, Khan N A, Iqbal A, Li L, Tang Z Y. J Mater Chem A, 2016, 4(42): 16312-16317.  doi: 10.1039/C6TA05784E

    37. [37]

      Zhuang X D, Zhang F, Wu D Q, Feng X L. Adv Mater, 2014, 26(19): 3081-3086.  doi: 10.1002/adma.201305040

    38. [38]

      Hao L, Ning J, Luo B, Wang B, Zhang Y B, Tang Z H, Yang J H, Thomas A, Zhi L J, J Am Chem Soc, 2015, 137(1): 219-225.  doi: 10.1021/ja508693y

    39. [39]

      Mulzer C R, Shen L, Bisbey R P, McKone J R, Zhang N, Abruna H D, Dichtel W R. ACS Cent Sci, 2016, 2(9): 667-673.  doi: 10.1021/acscentsci.6b00220

    40. [40]

      Bui M. P. N, Li C. A, Han K N, Pham X H, Seong G H. Analyst, 2012, 137(8): 1888-1894.  doi: 10.1039/c2an16020j

    41. [41]

      Dong Y P, Zhou Y, Ding Y, Chu X F, Wang C M. Anal Methods, 2014, 6(23): 9367-9374.  doi: 10.1039/C4AY01908C

    42. [42]

      Li A, Lu R F, Wang Y, Wang X, Han K L, Deng W Q. Angew Chem Int Ed, 2010, 49(19):3330-3333.  doi: 10.1002/anie.200906936

    43. [43]

      Xu F, Hong X, Chen X, Wu D C, Wu Y, Liu H, Gu C, Fu R W, Jiang D L. Angew Chem Int Ed, 2015, 54(23): 6814-6818.  doi: 10.1002/anie.201501706

    44. [44]

      Fu X, Zhang Y D, Gu S, Zhu Y L, Yu G P, Pan C Y, Wang Z G, Hu Y H. Chem Eur J, 2015, 21(38): 13357-13363.  doi: 10.1002/chem.v21.38

    45. [45]

      Chen D Y, Gu S, Fu Y, Zhu Y L, Liu C, Li G H, Yu G P, Pan C Y. Polym Chem, 2016, 7(20): 3416-3422.  doi: 10.1039/C6PY00278A

    46. [46]

      Zhao W X, Hou Z S, Yao Z Q, Zhuang X D, Zhang F, Feng X L. Polym Chem, 2015, 6(40): 7171-7178.  doi: 10.1039/C5PY01194A

    47. [47]

      Wang P Y, Wu Q, Han L F, Wang S, Fang S M, Zhang Z H, Sun S M. RSC Adv, 2015, 5(35): 27290-27294.  doi: 10.1039/C5RA02251G

    48. [48]

      Roberts A D, Li X, Zhang H F. Chem Soc Rev, 2014, 43(13): 4341-4356.  doi: 10.1039/C4CS00071D

    49. [49]

      Li Z H, Wu D C, Huang X, Ma J H, Liu H, Liang Y R, Fu R W, Matyjaszewski K. Energy Environ Sci, 2014, 7(9): 3006 -3012.  doi: 10.1039/C4EE00941J

    50. [50]

      Yang X W, Zhuang X D, Huang Y J, Jiang J Z, Tian H, Wu D Q, Zhang F, Mai Y Y, Feng X L. Polym Chem, 2015, 6(7): 1088-1095.  doi: 10.1039/C4PY01408A

    51. [51]

      Li Y Q, Roy S, Ben T, Xu S X, Qiu S L. Phys Chem Chem Phys, 2014, 16(25): 12909-12917.  doi: 10.1039/c4cp00550c

    52. [52]

      Eliad L Salitra G, Soffer A, Aurbach D. J Phys Chem B, 2001, 105(29): 6880-6887.  doi: 10.1021/jp010086y

    53. [53]

      Eliad L, Salitra G, Soffer A, Aurbach D. J Phys Chem B, 2002, 106(39): 10128-10134.  doi: 10.1021/jp020336q

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    10. [10]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    11. [11]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    12. [12]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    13. [13]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    14. [14]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    15. [15]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    18. [18]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    19. [19]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    20. [20]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

Metrics
  • PDF Downloads(0)
  • Abstract views(106)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return