Citation: Hong-jun Guo, Xue Wang, Li-shuai Zong, Jian-fang Li, Jin-yan Wang, Gui-yang Li, Xi-gao Jian. Reactive Toughening Modification of 601 Epoxy Resin Using Poly(phthalazinone ether sulfone)s Bearing Pendant Carboxyl Groups[J]. Acta Polymerica Sinica, ;2018, 0(9): 1236-1243. doi: 10.11777/j.issn1000-3304.2017.17286 shu

Reactive Toughening Modification of 601 Epoxy Resin Using Poly(phthalazinone ether sulfone)s Bearing Pendant Carboxyl Groups

  • A series of poly(aryl ether sulfonephthalazinone)s (PPES-Ps) containing pendent carboxyl groups and N-heterocyclicphthalazinone units were derived from phenolphthalin (PPL) and 4-(3-chloro-4-hydroxylphenyl)(2H)-phthalazin-1-one (DHPZ) with 4,4′-dichlorodiphenyl sulfone (DCS) via " one-pot” solution polymerization. The structure of the resulting polymers was elaborately controlled by tailoring the feed ratio of the two diphenols to have a balance between the carboxyl content and the thermal resistance. As evidenced by NMR analysis, the structure of the corrsponding polymers along with the carboxyl content is consistent with those designed. PPES-Ps also exhibit high glass transition temperature (Tg > 260 °C) and excellent thermal stability as well as good solubility, mainly originating from the rigid, bulky, non-coplanar phthalazinone units. As the content of phthalazinone unit increases, both Tg and solubility demostrate an increasing trend. Furthermore, the copolymers with different contents of carboxyl groups are used to reactively toughen 601 epoxy resin. The mechanical and thermal properties of the obtained blending system are investigated in details. The results indicate that the pendant carboxyl groups in PPES-P can efficiently react with the epoxy groups of 601 resin during the thermal curing, leading to cross-linking networks by covalent bonding, which can not only improve the fracture toughness and flexural properties, but also maintain the high Tg of 601 epoxy resin. The impact strength of 601 epoxy resin, reactively toughened by PPES-P13 derived from PPL/DHPZ with the molar ratio of 1:3, is 43% higher than that of unmodified 601 resin. Meanwhile, the fracture of impact specimen shows a toughened fracture character, and no phase separation is observed on the crack surface, even with a high concent (15%) of PPES-P, which means that the reactive carboxyl moiety could enhance the compatibility between the high rigid poly(aryl ether)s and the epoxy resins. The 601 resins, reactively modified with PPES-Ps toughening, are thus expected to be useful in multistage toughening of carbon fiber reinforced resin matrix composites.
  • 加载中
    1. [1]

      Zhong X, Wang G M , Papandrea B, Li M, Xu Y X, Chen Y, Chen C Y, Zhou H L, Xue T, Li Y J, Li D H, Huang Y, Duan X F. Nano Res, 2015, 8(9): 2850 − 2858

    2. [2]

      Li N, Wu Z Q, Huo L, Zong L S, Guo Y J, Wang J Y, Jian X G. RSC Adv, 2016, 6(74): 70704 − 70714

    3. [3]

      Zong L S, Liu C, Zhang S H, Wang J Y, Jian X G. Polymer, 2015, 77: 177 − 188

    4. [4]

      Zong L. RSC Adv, 2015, 5(94): 77027 − 77036

    5. [5]

      Wu Z. J Appl Polym Sci, 2018, 135(13): 45976 − 45984

    6. [6]

      Li N. Compos Part A: Appl S, 2017, 101: 490 − 499

    7. [7]

    8. [8]

    9. [9]

    10. [10]

      Pappas G. Int J Solids Struct, 2016, 85: 114 − 124

    11. [11]

      Lobanov M. Polym Sci Ser B, 2016, 58(1): 1 − 12

    12. [12]

      Liu R, Wang J Y, He Q Z, Zong L S, Jian X G. J Appl Polym Sci, 2016, 133(10): 42938 − 42945

    13. [13]

      Liu R, Wang J Y, He Q Z, Zong L S, Jian X G. Polymer, 2008, 49(1): 278 − 294

    14. [14]

      Hsieh T. Polymer, 2010, 51(26): 6284 − 6294

    15. [15]

      Sue H. Colloid Polym Sci, 1994, 272(4): 456 − 466

    16. [16]

      Min K. Macromol Rapid Commun, 2006, 27: 594 − 596

    17. [17]

      Bhuniya S. J Appl Polym Sci, 2003, 90(6): 1497 − 1506

    18. [18]

      Francis B. Polymer, 2005, 46(26): 12372 − 12385

    19. [19]

      Saxena A. J Appl Polym Sci, 2007, 106(2): 1318 − 1331

    20. [20]

      Liu F. Polym Int, 2009, 58: 912 − 918

    21. [21]

      Liu F. J Polym Sci, Part B: Polym Phys, 2010, 48(23): 2424 − 2431

    22. [22]

  • 加载中
    1. [1]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    4. [4]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    5. [5]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    6. [6]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    7. [7]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    8. [8]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    9. [9]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    10. [10]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    11. [11]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    12. [12]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    13. [13]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    14. [14]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    15. [15]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    16. [16]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    17. [17]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    18. [18]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    19. [19]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    20. [20]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

Metrics
  • PDF Downloads(0)
  • Abstract views(134)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return