Citation: Hua Li, Song-gui Luo, Xiao-hua Huang, Chan-juan Liu, Chun Wei. Preparation and Properties of High Heat-resistant Soluble Fluorinated and Containing Pyridine Ring Aromatic Polyamides[J]. Acta Polymerica Sinica, ;2018, 0(5): 632-638. doi: 10.11777/j.issn1000-3304.2017.17174 shu

Preparation and Properties of High Heat-resistant Soluble Fluorinated and Containing Pyridine Ring Aromatic Polyamides

  • Corresponding author: Xiao-hua Huang, huangxiaohua@glut.edu.cn
  • Received Date: 3 July 2017
    Revised Date: 31 July 2017
    Available Online: 1 March 2018

  • A novel diamine monomer 4-(4-trifluoromethylthiophenyl)-2,6-bis(4-aminophenyl)pyridine (FTPAP) was synthesized from 4-trifluoromethylthiobenzaldehyde and 4-nitroacetophenone by two-step reaction, and its structure was characterized via Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and mass spectrometry (MS). A series of novel soluble fluorinated aromatic polyamides (PA) containing pyridine ring, bulky group trifluoromethylthiophenyl and non-coplanar structure were prepared by Yamazaki phosphorylating condensation with aromatic dicarboxylic acids, such as terephthalic acid (NDA), 4-(4-carboxyphenoxy)benzoic acid (CPBA) and terephthalic acid (PTA). The structure of PA was characterized by FTIR and 1H-NMR. Gel permeation chromatography (GPC) data showed that PA has a relatively higher molecular weight and a lower dispersion coefficient, and the weight-average molecular weight and molecular weight distribution of PA were in the range of 9.30 × 104 − 1.26 × 10 5 and 1.12 − 1.33, respectively. Obviously, PA presenting excellent solubility was not only dissolved in high boiling organic solvents, such as N-methyl-2-pyrrolidone (NMP), dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), at room temperature, but also partially dissolved in low boiling solvents, such as tetrahydrofuran (THF) and chloroform (CHCl3) under heating. Furthermore, they also showed excellent thermal properties with the glass transition temperature (Tg) in the range of 285 − 325 °C under nitrogen atmosphere, T5% and T10% weight loss temperature in the range of 396 − 435 °C and 430 − 490 °C under nitrogen atmosphere respectively, and all with a char yield above 70%. Moreover, they also showed excellent optical properties with the cutoff wavelength ranges of 369 − 384 nm, the wavelengths of 80% transmittance above 440 nm. The result of WAXD indicated that all the polymers exhibited amorphous structure. In addition, PA films also presented good mechanical properties with the tensile strength ranged from 43.2 − 95.0 MPa, Young’s modulus from 0.90 − 1.39 GPa, and the elongation at break from 3.3% − 8.8%.
  • 加载中
    1. [1]

      Hsiao S H, Chen C W, Liou G S. J Polym Sci, Part A: Polym Chem, 2004, 42(13): 3302–3313  doi: 10.1002/(ISSN)1099-0518

    2. [2]

      Pan Y, Tang X Z. Synth Met, 2009, 159: 1796–1799  doi: 10.1016/j.synthmet.2009.05.027

    3. [3]

      Shiraishi K, Kanbara T, Yamamoto T, Groenendaal L B. Polymer, 2001, 42: 7229–7232  doi: 10.1016/S0032-3861(01)00137-9

    4. [4]

      Lewandowski S, Rejsek-Riba V, Bernes A, Perraud S, Lacabanne C. J Appl Polym Sci, 2016, 133: 1–7

    5. [5]

      Jessop I A, Tundidor-Camba A, Terraza C A, Gonzalez-Henriquez C M, Tagle L H. J Appl Polym Sci, 2016, 133(29): 1–9

    6. [6]

      Bell E A, Holloway R W, Cath T Y. J Membr Sci, 2016, 517: 1–13  doi: 10.1016/j.memsci.2016.06.014

    7. [7]

    8. [8]

      Lin C H, Wong T I, Wang M W, Chang H C, Juang T Y. J Polym Sci, Part A: Polym Chem, 2015, 53: 513–520  doi: 10.1002/pola.v53.4

    9. [9]

    10. [10]

      Terraza C A, Tagle L H, Munoz D, Tundidor-Camba A, Ortiz P A , Coll D, Gonzalez-Henriquez C M, Jessop I A. Polym Bull, 2016, 73(4): 1103–1117  doi: 10.1007/s00289-015-1537-7

    11. [11]

    12. [12]

    13. [13]

      Tapaswi P K, Choi M C, Nagappan S, Ha C S. J Polym Sci, Part A: Polym Chem, 2015, 53: 479–488  doi: 10.1002/pola.v53.3

    14. [14]

    15. [15]

    16. [16]

    17. [17]

      Sweileh B A, Khalili F I, Hamadneh I, Al-Dujaili A H. Fiber Polym, 2016, 17(2): 166–173  doi: 10.1007/s12221-016-5400-8

    18. [18]

      Liaw D J, Chen W H, Hu C K, Lee K R, Lai J Y. Polymer, 2007, 48(22): 6571–6580  doi: 10.1016/j.polymer.2007.08.041

    19. [19]

      Xu X, Chen B C, Li H, Huang X H, Liu C J. Chin J Chem, 2017, 35: 341–346  doi: 10.1002/cjoc.v35.3

    20. [20]

      Ge Z, Yang S, Tao Z, Liu J, Fan L. Polymer, 2004, 45(11): 3627–3635  doi: 10.1016/j.polymer.2004.03.037

  • 加载中
    1. [1]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    12. [12]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    17. [17]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    18. [18]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    19. [19]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    20. [20]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

Metrics
  • PDF Downloads(0)
  • Abstract views(104)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return