Citation: Bao-tong Ye, Zhi Cai, Jing Wu, Xin Lin, Jing-xiao Chen, Jing-hua Chen. Preparation of Sulfonated Galactose-based Glycopolymers and Interactions with Lectins[J]. Acta Polymerica Sinica, ;2018, (4): 490-498. doi: 10.11777/j.issn1000-3304.2017.17138 shu

Preparation of Sulfonated Galactose-based Glycopolymers and Interactions with Lectins

  • A series of sulfonated galactose-based glycopolymers with different chemical structures were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization. Galactose modified hydroxyethyl methacrylate and sodium p-styrene sulfonate were used as monomers to construct homo-, block-, and random-glycopolymers. The chemical structures and molecular weights of the synthesized polymers were characterized through 1H-NMR spectroscopy and GPC-MALLS analyses. Results showed that each glycopolymer possessed an average molecular weight of 1.5 x 104 with narrow molecular weight distribution (PDI~1.1). The turbidimetry assay indicated that the interactions between the glycopolymers and peanut agglutinin (PNA), which were used as model lectin, were influenced by the structure of the glycopolymers. The introduction of the sulfonic group significantly improved the PNA-binding ability of the glycopolymers through the synergistic effect of specific recognition and electrostatic interactions. Importantly, this effect was adjustable by varying the amount and distribution of the sulfonic groups. Both block-and random-glycopolymers exhibited significantly enhanced PNA-binding behavior with increasing amount of sulfonic groups. Moreover, the binding ability peaked when the molar ratio of the sulfonic groups was 66.7%. By contrast, the random-type glycopolymer, namely, P(Gal21-r-SS41), exhibited the strongest PNA-binding ability, which increased by 2.7-fold compared with that of the homo-type glycopolymer PGal. The ELISA assay further revealed that the polymerization and random distribution of the sulfonic groups in the glycopolymer substantially enhanced the recognition between PNA and the galactose moiety. The inhibition rate of galactose (30 mmol/L) against the PNA binding of PGal, P(Gal21-b-SS43), and P(Gal21-r-SS41) were 80%, 57.3%, and 34.2%, respectively. However, the contents of the galactose moiety in these samples were 3.8, 2.1 and 2.0 mmol/L, respectively. Overall, the order of PNA-binding ability was:P(Gal-r-SS) > P(Gal-b-SS) > PGal > PSS. In addition, the viability of B16 cancer cells and COS7 normal cells was higher than 80% when the concentration of the glycopolymers was 256 mg/L, indicating a good biocompatibility of these polymers. Based on the analysis of glycopolymer-lectin interactions, P(Gal21-r-SS41) effectively inhibited the migration of B16 tumor cells and thus can be applied in clinical therapy for tumor metastasis.
  • 加载中
    1. [1]

      Valastyan S, Weinberg R A. Cell, 2011, 147(2):275-292  doi: 10.1016/j.cell.2011.09.024

    2. [2]

      Steeg P S. Nat Rev Cancer, 2016, 16(4):201-218  doi: 10.1038/nrc.2016.25

    3. [3]

      Rabinovich G A, Croci D O. Immunity, 2012, 36(3):322-335  doi: 10.1016/j.immuni.2012.03.004

    4. [4]

      Rambaruth N D, Greenwell P, Dwek M V. Glycobiology, 2012, 22(6):839-848  doi: 10.1093/glycob/cws051

    5. [5]

      Dube D H, Bertozzi C R. Nat Rev Drug Discov, 2005, 4(6):477-488  doi: 10.1038/nrd1751

    6. [6]

      Song L, Tang J W, Owusu L, Sun M Z, Wu J, Zhang J. Clin Chim Acta, 2014, 431:185-191  doi: 10.1016/j.cca.2014.01.019

    7. [7]

      Lau K, Dennis J. Glycobiology, 2008, 18(10):750-760  doi: 10.1093/glycob/cwn071

    8. [8]

      Bapu D, Runions J, Kadhim M, Brooks S A. Cancer Lett, 2016, 375(2):367-374  doi: 10.1016/j.canlet.2016.03.019

    9. [9]

      Hostettler N, Naggi A, Torri G, Ishai-Michaeli R, Casu B, Vlodavsky I, Borsig L. FASEB J, 2007, 21(13):3562-3572  doi: 10.1096/fj.07-8450com

    10. [10]

      Wu L, Sun J, Su X, Yu Q, Yu Q, Zhang P. Carbohydr Polym, 2016, 154:96-111  doi: 10.1016/j.carbpol.2016.08.005

    11. [11]

      Schneider T, Ehrig K, Liewert I, Alban S. Glycobiology, 2015, 25(8):812-824  doi: 10.1093/glycob/cwv022

    12. [12]

      Meng Jianqiang, Dong Yongquan, Li Zichen. Acta Polymerica Sinica, 2010, (5):550-555
       

    13. [13]

      Song Rongguang, Li Yanchun, Shi Tongfei, Pei Danfeng, Zhang Guo. Acta Polymerica Sinica, 2015, (10):1128-1132  doi: 10.11777/j.issn1000-3304.2015.150157
       

    14. [14]

      Su L, Zhang W, Wu X, Zhang Y F, Chen X, Liu G W, Chen G S, Jiang M. Small, 2015, 11(33):4191-4200  doi: 10.1002/smll.v11.33

    15. [15]

      Qi L, Lyu Z, You Y, Yu Y, Zhao Z A, Hu S J, Yuan L, Chen G J, Chen H. ACS Appl Mater Interfaces, 2017, 9(13):11518-11527  doi: 10.1021/acsami.7b01397

    16. [16]

      Oh Y I, Sheng G J, Chang S K, Hsieh-Wilson L C. Angew Chem Int Ed, 2013, 52(45):11796-11799  doi: 10.1002/anie.v52.45

    17. [17]

      Sheng G, Oh Y I, Chang S K, Hsieh-Wilson L C. J Am Chem Soc, 2013, 135(30):10898-10901  doi: 10.1021/ja4027727

    18. [18]

      Miura Y, Yu H, Seto H. Chem Rev, 2016, 116(4):1673-1692  doi: 10.1021/acs.chemrev.5b00247

    19. [19]

      Wu D Q, Li Z Y, Li C, Fan J J, Lu B, Chang C, Cheng S X, Zhang X Z, Zhuo R X. Pharm Res, 2010, 27(1):187-199  doi: 10.1007/s11095-009-9998-8

    20. [20]

      Kumar S, Maiti B, De P. Langmuir, 2015, 31(34):9422-9431  doi: 10.1021/acs.langmuir.5b02245

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    3. [3]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    4. [4]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    5. [5]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    7. [7]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    8. [8]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    9. [9]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    10. [10]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    11. [11]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    12. [12]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    13. [13]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    14. [14]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    15. [15]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    16. [16]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    17. [17]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    18. [18]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    19. [19]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    20. [20]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

Metrics
  • PDF Downloads(0)
  • Abstract views(152)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return