Citation: Chu Wang, Li Wang, Jin-hao Huo, Jian Zhou. Computer Simulation on the pH-Responsive Block Copolymer Membrane[J]. Acta Polymerica Sinica, ;2018, (4): 515-523. doi: 10.11777/j.issn1000-3304.2017.17137 shu

Computer Simulation on the pH-Responsive Block Copolymer Membrane

  • Corresponding author: Jian Zhou, jianzhou@scut.edu.cn
  • Received Date: 22 May 2017
    Revised Date: 12 July 2017

  • Dissipative particle dynamics (DPD) was employed to investigate the self-assembly of tri-block copolymer PS-PAA-PEO into channel membrane by non-solvent induced phase separation method. The micro-phase separation process was simulated by solvent exchange method, which mimics the practical membrane preparation process. The polymer concentration has a significant effect on the micro-phase separation process:a too high polymer concentration would limit the micro-phase separation, while a too low concentration would result in lamellar structure. For the PS-PAA-PEO system, it was found that the channel membrane could be obtained in the concentration range of 30%-45%. The morphology evolution clearly showed the micro-phase separation process. The polymer chains of PS formed the matrix part of the channel membrane and the chains of PAA acted as the "open/close" switch, while the chains of PEO were distributed in the innermost. Because PAA possesses weak acidic groups that can gain or lose protons in response to pH, the sizes of the channel pores at different pH are calculated. At pH lower than the pKa of PAA, the carboxyl groups of PAA are protonated, therefore the membrane pore is in the "open" state because of the reduced electrostatic repulsion between PAA on the inner pore surface. In contrast, at neutral pH, the carboxyl groups of PAA are dissociated and negatively charged; the membrane pore is in the "closed" state because the repulsion between negative groups makes PAA chains extensively swelled. With pH values changing from 1 to 6.25, the membrane pore size decreased from 19.3 nm to 2.9 nm. After the porous membrane was solidified, small-sized nanoparticles could pass through the middle of the channel. The filtration of different sized nanoparticles was studied to justify the accuracy of the pore sizes under different dissociation degrees. The permeation results confirmed that the channel membrane, which was in the "close" state due to the swollen conformation of PAA, had the size-based filtration function.
  • 加载中
    1. [1]

      Ang W L, Mohammad A W, Hilal N, Leo C P. Desalination, 2015, 363:2-18  doi: 10.1016/j.desal.2014.03.008

    2. [2]

      Patching S G. Biochimica et Biophysica Acta (BBA)-Biomembranes 2014, 1838(1):43-55
       

    3. [3]

      Ning Dan, Hu Zhaoxia, Chen Rong, Chen Hanwen, Yang Hui, Chen Shouwen. Acta Polymerica Sinica, 2017, (5):842-850
       

    4. [4]

      Shenvi S S, Isloor A M, Ismail A. Desalination, 2015, 368(15):10-26
       

    5. [5]

      Chan W F, Marand E, Martin S M. J Membr Sci, 2016, 509:125-137  doi: 10.1016/j.memsci.2016.02.014

    6. [6]

      Chen X, Luo J, Qi B, Cao W, Wan Y. Water Process Eng, 2015, 7:1-10  doi: 10.1016/j.jwpe.2015.04.009

    7. [7]

      Liu Z, Wang W, Xie R, Ju X J, Chu L Y. Chem Soc Rev, 2016, 45(3):460-475  doi: 10.1039/C5CS00692A

    8. [8]

      Guo H, Qiu X, Zhou J. J Chem Phys, 2013, 139(8):084907  doi: 10.1063/1.4817003

    9. [9]

      Min W, Zhao D, Quan X, Sun D, Li L, Zhou J. Colloids Surf B, 2017, 152(1):260-268
       

    10. [10]

      Hu Yadong, Xu Pei, Luo Xiao, Zuo Xingang, Chen Fang, Ding Yunsheng. Acta Polymerica Sinica, 2017, (5):776-784
       

    11. [11]

      Thévenot J, Oliveira H, Sandre O, Lecommandoux S. Chem Soc Rev, 2013, 42(17):7099-7116  doi: 10.1039/c3cs60058k

    12. [12]

      Ma Xiang, Tian He. Acta Polymerica Sinica, 2017, (1):27-36
       

    13. [13]

      Yu H, Qiu X, Behzad A, Musteata V, Smilgies D-M, Nunes S, Peinemann K V. Chem Commun, 2016, 2016, 52(81):12064-12067
       

    14. [14]

      Tripathi B P, Dubey N C, Choudhury S, Simon F, Stamm M. J Mater Chem B, 2013, 1(27):3397-3409  doi: 10.1039/c3tb20386g

    15. [15]

      Tang Y H, Lin H H, Liu T Y, Matsuyama H. J Membr Sci, 2016, 515(1):258-267
       

    16. [16]

      Nunes S P. Macromolecules, 2016, 49(8):2905-2916  doi: 10.1021/acs.macromol.5b02579

    17. [17]

      Baldi A, Narayan T C, Koh A L, Dionne J A. Nat Mater, 2014, 13(12):1143-1148  doi: 10.1038/nmat4086

    18. [18]

      Liu Y, Li Y, He J, Duelge K J, Lu Z, Nie Z. J Am Chem Soc, 2014, 136(6):2602-2610  doi: 10.1021/ja412172f

    19. [19]

      Huang Zihan, Dong Bojun, Chen Pengyu, Yang Ye, Zhu Guolong, Yan Litang. Acta Polymerica Sinica, 2016, (8):979-991  doi: 10.11777/j.issn1000-3304.2016.16055
       

    20. [20]

      Lin H H, Tang Y H, Liu T Y, Matsuyama H, Wang X L. J Membr Sci, 2016, 507:143-153  doi: 10.1016/j.memsci.2016.01.049

    21. [21]

      Zhou J, Zhu X, Hu J, Liu H, Hu Y, Jiang J. Phys Chem Chem Phys, 2014, 16(13):6075-6083  doi: 10.1039/c3cp55498h

    22. [22]

      Konatham D, Yu J, Ho T A, Striolo A. Langmuir, 2013, 29(38):11884-11897  doi: 10.1021/la4018695

    23. [23]

      Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M, Zettl A. Nano Lett, 2008, 8(11):3582-3586  doi: 10.1021/nl801386m

    24. [24]

      He Z, Zhou J, Lu X, Corry B. ACS Nano, 2013, 7(11):10148-10157  doi: 10.1021/nn4043628

    25. [25]

      Gao W, Liang H, Ma J, Han M, Chen Z L, Han Z S, Li G B. Desalination, 2011, 272(1):1-8
       

    26. [26]

      Wang C, Ma S, Hu Y, Wang R. Langmuir, 2017, 33(14):3427-3433  doi: 10.1021/acs.langmuir.6b04509

    27. [27]

      Shin J M, Kim Y, Yun H, Yi G R, Kim B J. ACS Nano, 2017, 11(2):2133-2142  doi: 10.1021/acsnano.6b08342

    28. [28]

      Sepehr F, Liu H, Luo X, Bae C, Tuckerman M E, Hickner M A, Paddison S J. Macromolecules, 2017, 50(11):4397-4405  doi: 10.1021/acs.macromol.7b00082

    29. [29]

      Wang Jian, Lu Yuyuan, Xu Yuci, Ruan Yongjin, Li Liangyi, An Lijia. Acta Polymerica Sinica, 2015, (3):271-287
       

    30. [30]

      Qian Junhu, Jiao Guisheng, Li Yanchun, Lv Zhongyuan. Acta Polymerica Sinica, 2016, (8):1011-1020  doi: 10.11777/j.issn1000-3304.2016.16067
       

    31. [31]

      Liu Hongyan, Guo Hongyu, Zhou Jian. Acta Chim Sin, 2012, 70(23):2445-2450
       

    32. [32]

      Sun Delin, Zhou Jian. Acta Physico-Chimica Sinica, 2012, 28(4):909-916
       

    33. [33]

      Groot R D, Warren P B. J Chem Phys, 1997, 107(11):4423-4435  doi: 10.1063/1.474784

    34. [34]

      Groot R D. J Chem Phys, 2003, 118(24):11265-11277  doi: 10.1063/1.1574800

    35. [35]

      González-Melchor M, Mayoral E, Velázquez M E, Alejandre J. J Chem Phys, 2006, 125(22):224107  doi: 10.1063/1.2400223

    36. [36]

      Karunakaran M, Nunes S P, Qiu X, Yu H, Peinemann K V. J Membr Sci, 2014, 453471-477  doi: 10.1016/j.memsci.2013.11.015

    37. [37]

      Kacar G, de With G. Phys Chem Chem Phys, 2016, 18(14):9554-9560  doi: 10.1039/C6CP00729E

    38. [38]

      Cheng F, Guan X, Cao H, Su T, Cao J, Chen Y, Cai M, He B, Gu Z, Luo X. Int J Pharm, 2015, 492(1-2):152-160  doi: 10.1016/j.ijpharm.2015.07.031

    39. [39]

      Bautista-Reyes R, Soto-Figueroa C, Vicente L. Model Simul Mater Sci Eng, 2016, 24(4):045004  doi: 10.1088/0965-0393/24/4/045004

    40. [40]

      Kacar G, Peters E. EPL (Europhysics Letters), 2013, 102(4):40009  doi: 10.1209/0295-5075/102/40009

    41. [41]

      Brandrup J, Immergut E H, Grulke E A, Abe A, Bloch D R. Polymer Handbook. New York:Wiley, 1989

    42. [42]

      Groot R D, Madden T J. J Chem Phys, 1998, 108(20):8713-8724  doi: 10.1063/1.476300

    43. [43]

      Groot R D, Rabone K L. Biophys J, 2001, 81(2):725-736  doi: 10.1016/S0006-3495(01)75737-2

    44. [44]

      Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refson K, Payne M C. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(5/6):567
       

    45. [45]

      Shuichi N. Prog Theor Phys Suppl, 1991, 103:1-46  doi: 10.1143/PTPS.103.1

    46. [46]

      Andersen H C. J Chem Phys, 1980, 72(4):2384-2393  doi: 10.1063/1.439486

    47. [47]

      Sun H, Jin Z, Yang C, Akkermans R L, Robertson S H, Spenley N A, Miller S, Todd S M. J Mol Model, 2016, 22(2):47  doi: 10.1007/s00894-016-2909-0

    48. [48]

      Zhang Naiwen, Chen Jiabin, Yu Zhijia. Chemical Engineering Thermodynamics. Dalian:Dalian University of Technology Press. 2006. 109-117

    49. [49]

      Yu H, Qiu X, Behzad A, Musteata V, Smilgies D M, Nunes S P, Peinemann K V. Chem Commun, 2016, 52(81):12064-12067  doi: 10.1039/C6CC06402G

    50. [50]

      Hess S C, Kohll A X, Raso R A, Schumacher C M, Grass R N, Stark W J. ACS Appl Mater Interfaces, 2015, 7(1):611-617  doi: 10.1021/am506737n

    51. [51]

      Seaton M A, Anderson R L, Metz S, Smith W. Mol Simul, 2013, 39(10):796-821  doi: 10.1080/08927022.2013.772297

    52. [52]

      Mai J, Sun D, Li L, Zhou J. J Chem Eng Data, 2016, 61(12):3998-4005  doi: 10.1021/acs.jced.6b00522

    53. [53]

      May Junlin, Sun Delin, Quan Xuebo, Li Libo, Zhou Jian. Acta Physico-Chimica Sinica, 2016, 32(7):1649-1657  doi: 10.3866/PKU.WHXB2016032804

    54. [54]

      Wielema T A, Engberts J B. Eur Polym J, 1990, 26(4):415-421  doi: 10.1016/0014-3057(90)90043-4

    55. [55]

      Nie S Y, Sun Y, Lin W J, Wu W S, Guo X D, Qian Y, Zhang L J. J Phys Chem B, 2013, 117(43):13688-13697  doi: 10.1021/jp407529u

    56. [56]

      Xu X, Chen S, Zhuang L, Zheng C, Wu Y. J Mater Sci, 2014, 49(7):2853-2863  doi: 10.1007/s10853-013-7991-4

    57. [57]

      Berezkin A V, Papadakis C M, Potemkin I I. Macromolecules, 2015, 49(1):415-424

    58. [58]

      Yong X, Qin S, Singler T J. Extre Mech Lett, 2016, 790-103
       

    59. [59]

      Boles M A, Engel M, Talapin D V. Chem Rev, 2016, 116(18):11220-11289  doi: 10.1021/acs.chemrev.6b00196

    60. [60]

      Wang Z, Guo L, Wang Y. J Membr Sci, 2015, 476:449-456  doi: 10.1016/j.memsci.2014.12.009

    61. [61]

      Sarkisov L, Harrison A. Mol Simul, 2011, 37(15):1248-1257  doi: 10.1080/08927022.2011.592832

    62. [62]

      Nunes S P. Macromolecules, 2016, 49(8):2905-2916  doi: 10.1021/acs.macromol.5b02579

    63. [63]

      Yu H, Qiu X, Moreno N, Ma Z, Calo V M, Nunes S P, Peinemann K V. Angew Chem Int Ed, 2015, 54(47):13937-13941  doi: 10.1002/anie.201505663

  • 加载中
    1. [1]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    2. [2]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    5. [5]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    6. [6]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    7. [7]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    10. [10]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    11. [11]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    12. [12]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    13. [13]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    14. [14]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    15. [15]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    16. [16]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    17. [17]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    18. [18]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    19. [19]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    20. [20]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

Metrics
  • PDF Downloads(0)
  • Abstract views(168)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return