Citation: Jin Wang, Lin-lin Deng, Ling-xiang Guo, Bao-ping Lin, Hong Yang. Preparation and Radiation Shielding Properties of Sandwich-structured Lead-containing Polyimide Materials[J]. Acta Polymerica Sinica, ;2018, (4): 507-514. doi: 10.11777/j.issn1000-3304.2017.17121 shu

Preparation and Radiation Shielding Properties of Sandwich-structured Lead-containing Polyimide Materials

  • Corresponding author: Hong Yang, yangh@seu.edu.cn
  • Received Date: 3 May 2017
    Revised Date: 22 May 2017

  • 4, 4'-Diaminobiphenyl-2, 2'-disulfonic acid lead (BDSA(Pb)) is synthesized by ion exchange method, and copolymerized with 4, 4'-diaminodiphenyl ether (ODA) and 1, 2, 4, 5-benzenetetracarboxylic anhydride (PMDA) in N-methyl-2-pyrrolidone (NMP). Through thermal imidization and layer-by-layer casting process, a series of membranes of three-layer sandwich-structured lead-ion-containing polyimide composite material PI(Pb) are prepared, aiming to solve the problems of inhomogeneous distribution of lead, phase segregation and poor mechanical properties. These problems are commonly observed in traditional composite materials prepared by physical blending, which has been widely used for fabrication of X-ray and γ-ray shielding organic-inorganic composite materials by physically doping lead or its salts into a large volume of light-weight, easily-processed polymer matrixe. In this novel sandwich structure, the top and bottom layers are two pure polyimide layers obtained by polymerization of 4, 4'-diaminodiphenyl ether with 1, 2, 4, 5-benzenetetracarboxylic anhydride; the middle layer is the lead-ion-containing polyimide. The chemical and physical properties of this novel PI(Pb) composite material are throughly investigated, using nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, elemental analysis, X-ray diffraction, thermal gravimetric analysis, tensile testing experiments and γ-ray radiation etc. First, the thermal stability and mechanical properties of the PI(Pb) composite materials are examined and analyzed. Secondly, 60Co γ-ray radiation experiment is carried out on pure PI and PI(Pb) materials to analyze and compare their radiation resistance performances. Finally, the low-medium energy γ-ray radiation shielding properties of the materials are investigated using multi-channel gamma spectroscopy. Compared with pure polyimide material, this PI(Pb) composite material has much better γ-ray shielding capability under exposure of low-medium energy γ-rays (such as 241Am, 59.5 keV; and 238Pu, 79.9, 176.7 keV), enhanced radiation shielding rate, much higher linear attenuation and much lower half-value thickness, higher superior radiation resistance, excellent thermal stability and good mechanical performance.
  • 加载中
    1. [1]

      Feng Yanjun, Hua Gengxin, Liu Shufen. J Astronautics, 2007, 28(5):1071-1080
       

    2. [2]

      Pease R L. IEEE Trans Nucl Sci, 2003, 50(3):539-551  doi: 10.1109/TNS.2003.813133

    3. [3]

      Kulkarni R D, Agarwal V. Reliability analysis of a modern power supply under nuclear radiation effects. In: Tseng K J, ed. IEEE International Conference on Power Electronics and Drive Systems PEDS. Sigapore: IEEE, 2003. 71-76

    4. [4]

      Hughes H L, Benedetto J M. IEEE Trans Nucl Sci, 2003, 50(3):500-521  doi: 10.1109/TNS.2003.812928

    5. [5]

      Hu H S, Xu H, Zhang G G. Atomic Energy Sci Technol, 2005, 39(4):363-366

    6. [6]

      Ruck D M. Nucl lnstrum Methods Phys Res Sect B, 2000, 166-167:602-609  doi: 10.1016/S0168-583X(99)01175-1

    7. [7]

      Dong Wei, Liu Yuguang, Hou Jing, Zhou Wei, Zhang Xiaodong. Heilongjiang Sci, 2013, (8):18-19
       

    8. [8]

      Liu Xiankun, Liu Ying, Tang Jie. Mater Rev, 2006, 20(6):22-25
       

    9. [9]

      Rui Ju, He Bin, Wang Dong. Fu Guangzhi, Li Rusong, Zhou Bachang. Radiat Prot, 2006, 26(6):367-370
       

    10. [10]

      Erdem M, Baykara O, Doğru M, Kuluöztürk F. Radiat Phys Chem, 2010, 79(9):917-922  doi: 10.1016/j.radphyschem.2010.04.009

    11. [11]

      Ahmed A F, Antar E M. Polym-Plast Technol, 2014, 53(2):173-180  doi: 10.1080/03602559.2013.843705

    12. [12]

      Hayashi T, Tobita K, Nakamori Y, Orimo S. J Nucl Mater, 2009, 386-388:119-121  doi: 10.1016/j.jnucmat.2008.12.073

    13. [13]

      Chen Bo, Jiang Zhipeng, Luo Qingsong, Yin Hongguo. West Leather, 2016, 38(20):23-24  doi: 10.3969/j.issn.1671-1602.2016.20.019

    14. [14]

      Nishiwaki Y, Takatsu M, Miyamoto N, Watanabe S, Shimoda O, Muratsu S, Nakai I. Bunseki Kagaku, 2007, 56(12):1045-1052  doi: 10.2116/bunsekikagaku.56.1045

    15. [15]

      Abdel-Aziz M M, Azim O A, Abdel-Wahab L A, Seddik M M. Appl Surf Sci, 2006, 252(24):8716-8723  doi: 10.1016/j.apsusc.2005.12.077

    16. [16]

      Zhang Yali, Shen Xiaohong. Eng Plast Appl, 2010, 38 (2):20-22
       

    17. [17]

      Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J Y, Ha C S. Prog Polym Sci, 2012, 37(7):907-974  doi: 10.1016/j.progpolymsci.2012.02.005

    18. [18]

      Ding Mengxian. Polymide:Chemistry, Relationship between Structure and Properties, and Materials, 2nd ed. Beijing:Science Press, 2012. 221-247

    19. [19]

      Liao Xueming, Song Zhixiang, She Wangneng, Qu Xiuning, Liu Liangyan. Adhesion, 2008, 29(10):32-37  doi: 10.3969/j.issn.1001-5922.2008.10.009

    20. [20]

      Alkorta I, Elguero J. Struct Chem, 1998, (3):187-202
       

    21. [21]

      Sercombe T B. Mater Sci Eng:A, 2003, 363(1):242-252
       

    22. [22]

      Yang Wengfeng, Liu Ying, Yang Lin, Li De'an, LiJun. Mater Rev, 2007, 21(5):82-85
       

    23. [23]

      Zeng W X, Qiu W L, Liu J S, Yang X J, Lu L D, Wang X. Polymer, 1995, 36(19):3761-3765  doi: 10.1016/0032-3861(95)93781-G

    24. [24]

      Qiu W L, Yang X J, Lu L D, Wang X. J Appl Polym Sci, 1997, 63(13):1827-1831  doi: 10.1002/(ISSN)1097-4628

    25. [25]

      Yang X J, Wang X, Chen D Y, Yang J, Lu L D, Sun X Q, He G Y, Chen J. J Appl Polym Sci, 2000, 77(11):2363-2369  doi: 10.1002/(ISSN)1097-4628

    26. [26]

      Guo Lingxiang, Zong Dechao, Lin Baoping, Yang Hong. Acta Polymerica Sinica, 2015, (10):1181-1187
       

    27. [27]

      Zai M A K Y, Ansari M R K. Study the effect of ozone layer depletion on aircraft design at atmospheric region of Pakistan. In: Khattak M, ed. Proceedings of 2nd International Conference on Advances in Space Technologies. Islamabad: IEEE, 2008. 54-57

    28. [28]

      Lin Minghua, Chen Yihong, Huang Jianying, Lin Qiang, Zou Yousi. J Xiamen Univ (Natural Science), 2005, 44(2):235-237
       

    29. [29]

      Liu Runshan, Guo Tiedong, Zhao Wenxiu. Polym Mater Sci Eng, 1994, (2):1-8
       

    30. [30]

      Shu Yasha, Zhou Jiashan, Zhao Shasha, Zou Kaidian, Yu Cheng'e, Wei Jiadi, Xu Cheng. J Colloid Polym, 2011, 29(1):15-18
       

    31. [31]

      Qiu W L, Yang Y, Yang X J, Lu L D, Wang X. J Appl Polym Sci, 1996, 59(9):1437-1441  doi: 10.1002/(ISSN)1097-4628

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    3. [3]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    4. [4]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    9. [9]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    10. [10]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    13. [13]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    18. [18]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    19. [19]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(0)
  • Abstract views(147)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return