Citation: Jun Xu, Qiang-yu Qian, Jin-lin He, Ming-zu Zhang, Li-xing Dai, Pei-hong Ni. Anionic Synthesis and Characterization of Epoxidized Eight-arm Star-shaped Polyisoprene[J]. Acta Polymerica Sinica, ;2018, (3): 356-365. doi: 10.11777/j.issn1000-3304.2017.17087 shu

Anionic Synthesis and Characterization of Epoxidized Eight-arm Star-shaped Polyisoprene

  • Corresponding author: Jin-lin He, jlhe@suda.edu.cn
  • Received Date: 14 April 2017
    Revised Date: 27 April 2017

  • The synthesis of epoxidized star-shaped polymers by incorporation of living anionic polymerization with polyhedral oligomericsilsesquioxane (POSS) is seldom reported.In this study, the living (polyisopryl)lithium (PI-Li) is first synthesized in cyclohexane via high-vacuum living anionic polymerization using sec-butyllithium as the initiator and isoprene as the monomer.Subsequently, PI-Li is used to react with octavinyl polyhedral oligomericsilsesquioxane (OVPOSS) in cyclohexane to prepare an eight-arm star-shaped polyisoprene (8PI-POSS) in one pot.Purified 8PI-POSS is obtained after fractionation precipitation using cyclohexane/ethanol as solvent/nonsolvent, and characterized by nuclear magnetic resonance (1H-and 13C-NMR), gel permeation chromatography (GPC), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectroscopy and Fourier transform infrared spectroscopy (FTIR), respectively.Star-shaped polyisoprenes with different arm lengths are synthesized by changing the feed ratio of the monomer to the initiator.The compositions of the polymers are determined by comparison of integrals of characteristic signals from 1H-NMR spectra.GPC tests demonstrate that the eluent curves of the crude star-shaped polyisoprenes show an apparent shift to higher molecular weight compared with that of the base PI.The purified star-shaped polyisoprene (8PI-POSS) by fractionation precipitation possesses symmetric peaks with relatively narrow polydispersity.MALDI-TOF MS analysis indicates that the observed molecular weight of base PI is in good agreement with the calculated value.In addition, there are two minor peaks with an interval of 16 Da in the MALDI-TOF MS spectrum, which may be attributed to the possible oxidation reaction during storage or MALDI-TOF MS test.Unfortunately, the MALDI-TOF MS spectra of 8PI-POSS are not obtained probably due to their high molecular weights.Finally, the epoxidized star-shaped polyisoprene (8EPI-POSS) is obtained by oxidation of 8PI-POSS catalyzed by HCOOH/H2O2.The 8EPI-POSS polymer is also characterized by 1H-and 13C-NMR, GPC and FTIR analyses, respectively.The characteristic signals found in 1H-and 13C-NMR spectra, as well as in FTIR spectra confirm the formation of epoxy group in the 8EPI-POSS.By changing the temperature and time of oxidation reaction, the star-shaped 8EPI-POSS with different percentages of epoxidation (PE) are prepared.It is also found that the GPC eluent curve of 8EPI-POSS change a little after the oxidation reaction.TGA tests show that the thermal decomposition temperature of 8PI-POSS and 8EPI-POSS are higher than that of the base PI.Moreover, it is also found that about 3% residue is left at about 800 ℃, which maybe because of the incorporation of POSS segment in the star-shaped polymers.The epoxidized star-shaped polyisoprenes reported here may serve as an important intermediate in the preparation of highly branched polymers and as the novel tougheners for epoxy resins.
  • 加载中
    1. [1]

      Inoue K.Prog Polym Sci, 2000, 25:453-571  doi: 10.1016/S0079-6700(00)00011-3

    2. [2]

      Wu W, Wang W G, Li J S.Prog Polym Sci, 2015, 46:55-85  doi: 10.1016/j.progpolymsci.2015.02.002

    3. [3]

      Ren J M, McKenzie T G, Fu Q, Wong E H H, Xu J T, An Z S, Shanmugam S, Davis T P, Boyer C, Qiao G G.Chem Rev, 2016, 116:6743-6836  doi: 10.1021/acs.chemrev.6b00008

    4. [4]

      Deng Y, Zhang S, Lu G L, Huang X Y.Polym Chem, 2013, 4:1289-1299  doi: 10.1039/C2PY20622F

    5. [5]

      Tang Xinde, Fan Xinghe, Chen Xiaofang, Zhou Qifeng.Progress in Chemistry, 2005, 17(6):1089-1095
       

    6. [6]

      Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J.Prog Polym Sci, 2006, 31(12):1068-1132  doi: 10.1016/j.progpolymsci.2006.07.002

    7. [7]

      Yan Qiang, Sui Xiaofeng, Yuan Jinying.Progress in Chemistry, 2008, 20(10):1562-1571
       

    8. [8]

      Khanna K, Varshney S, Kakkar A.Polym Chem, 2010, 1:1171-1185  doi: 10.1039/c0py00082e

    9. [9]

      Altintas O, Vogt A P, Barner-Kowollik C, Tunca U.Polym Chem, 2012, 3:34-45  doi: 10.1039/C1PY00249J

    10. [10]

      Hong L X, Yang S H, He J P.Eur Polym J, 2015, 65:171-190  doi: 10.1016/j.eurpolymj.2015.02.019

    11. [11]

      Szwarc M.Nature, 1956, 178:1168-1169  doi: 10.1038/1781168a0

    12. [12]

      Hsieh H L, Quirk R P.Anionic polymerization:Principles and practical applications; Marcel Dekker:New York, 1996

    13. [13]

      Hadjichristidis N, Iatrou H, Pispas S, Pitsikalis M.J Polym Sci, Part A:Polym Chem, 2000, 38(18):3211-3234  doi: 10.1002/(ISSN)1099-0518

    14. [14]

      Uhrig D, Mays J W.J Polym Sci, Part A:Polym Chem, 2005, 43(24):6179-6222  doi: 10.1002/(ISSN)1099-0518

    15. [15]

      Ma Hongwei, Li Yang, Zhang Chunqing, Wang Yurong.Polymer Bulletin, 2011, (9):35-51
       

    16. [16]

      Ma Hongwei, Zhang Chunqing, Li Yang, Wang Yurong, Hu Yanming, Li Zhansheng, Zhao Zhongfu, Shen Kaihua.Acta Polymerica Sinica, 2011, (12):1390-1394
       

    17. [17]

      Baskaran D, Müller A H E.Prog Polym Sci, 2007, 32:173-219  doi: 10.1016/j.progpolymsci.2007.01.003

    18. [18]

      Han Bingyong, Yang Wantai, Jin Guantai.Polymer Bulletin, 2008, (7):29-34
       

    19. [19]

      Zhu Liji, Li Yang, Wang Yurong, Zhang Chunqing.Polymer Bulletin, 2009, (8):14-23
       

    20. [20]

      Hirao A, Goseki R, Ishizone T.Macromolecules, 2014, 47:1883-1905  doi: 10.1021/ma401175m

    21. [21]

      Ma H W, Han L, Li Y.Macromol Chem Phys, 2017, 218:1600420(1-7)

    22. [22]

      Patterson G.Nature, 2016, 536:276-277  doi: 10.1038/536276a

    23. [23]

      Polymeropoulos G, Zapsas G, Ntetsikas K, Bilalis P, Gnanou Y, Hadjichristidis N.Macromolecules, 2017, 50:1253-1290  doi: 10.1021/acs.macromol.6b02569

    24. [24]

      Cordes D B, Lickiss P D, Rataboul F.Chem Rev, 2010, 110(4):2081-2173.  doi: 10.1021/cr900201r

    25. [25]

      Hou Yonggang, Zhang Qiuyu, Zhang Hepeng, Ma Aijie, Sun Jiuli.Chemistry Online, 2010, 73(3):227-234

    26. [26]

      Kuo S W, Chang F C.Prog Polym Sci, 2011, 36(12):1649-1696  doi: 10.1016/j.progpolymsci.2011.05.002

    27. [27]

      Zhang W A, Müller A H E.Prog Polym Sci, 2013, 38(8):1121-1162  doi: 10.1016/j.progpolymsci.2013.03.002

    28. [28]

      Zhang W B, Yu X F, Wang C L, Sun H J, Hsieh I F, Li Y W, Dong X H, Yue K, Van Horn R, Cheng S Z D.Macromolecules 2014, 47(4):1221-1239  doi: 10.1021/ma401724p

    29. [29]

      Zhang W B, Cheng S Z D.Chinese J Polym Sci, 2015, 33(6):797-814  doi: 10.1007/s10118-015-1653-8

    30. [30]

      Zhang Wenbin, Wang Xiaoman, Wang Xiaowei, Liu Dong, Han Shuaiyuan, Cheng Stephen Z.D.Progress in Chemistry, 2015, 27(10):1333-1342  doi: 10.7536/PC150519

    31. [31]

      Yin G Z, Zhang W B, Cheng S Z D.Sci China Chem, 2017, 60(3):338-352  doi: 10.1007/s11426-016-0436-x

    32. [32]

      Zhang W B, Wu X L, Yin G Z, Shao Y, Cheng S Z D.Mater Horiz, 2017, 4:117-132  doi: 10.1039/C6MH00448B

    33. [33]

      Huang M J, Hsu C H, Wang J, Mei S, Dong X H, Li Y W, Li M X, Liu H, Zhang W, Aida T, Zhang W B, Yue K, Cheng S Z D.Science, 2015, 348(6233):424-428  doi: 10.1126/science.aaa2421

    34. [34]

      Yue K, Huang M J, Marson R L, He J L, Huang J, Zhou Z, Wang J, Liu C, Yan X S, Wu K, Guo Z, Liu H, Zhang W, Ni P H, Wesdemiotis C, Zhang W B, Glotzer S C, Cheng S Z D.Proc Natl Acad Sci USA 2016, 113(50):14195-14200  doi: 10.1073/pnas.1609422113

    35. [35]

      Zhang W B, He J L, Yue K, Liu C, Ni P H, Quirk R P, Cheng S Z D.Macromolecules, 2012, 45:8571-8579  doi: 10.1021/ma301597f

    36. [36]

      Yan Xuesheng, Xu Jun, He Jinlin, Zhang Mingzu, Dai Lixing, Ni Peihong.Acta Polymerica Sinica, 2017, (3):454-463
       

    37. [37]

      Yuan Z S, Gauthier M.Macromolecules, 2005, 38:4124-4132  doi: 10.1021/ma0479565

    38. [38]

      Zhang H X, Li Y, Zhang C Q, Li Z S, Li X, Wang Y R.Macromolecules 2009, 42:5073-5079  doi: 10.1021/ma900870c

    39. [39]

      Xie C, Ju Z H, Zhang C, Yang Y L, He J P.Macromolecules, 2013, 46:1437-1446  doi: 10.1021/ma3025317

    40. [40]

      Zhang H F, Zhu J, He J P, Qiu F, Zhang H D, Yang Y L, Lee H, Chang T.Polym Chem, 2013, 4:830-839  doi: 10.1039/C2PY20742G

    41. [41]

      Zhang C, He J P.Aust J Chem, 2014, 67:31-38  doi: 10.1071/CH13326

    42. [42]

      Ren Q, Xiang Y L, Huang C Y, Li J, Wang C Y.Polym Bull, 2015, 72:2949-2965  doi: 10.1007/s00289-015-1446-9

    43. [43]

      Kona B, Weidner St M, Friedrich J F.Int J Polym Anal Charact, 2005, 10:85-108  doi: 10.1080/10236660490935736

    44. [44]

      Rocks J, Rintoul L, Vohwinkel F, George G.Polymer, 2004, 45:6799-6811  doi: 10.1016/j.polymer.2004.07.066

  • 加载中
    1. [1]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    4. [4]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    5. [5]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    6. [6]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    7. [7]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    8. [8]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    9. [9]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    10. [10]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    11. [11]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    12. [12]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    13. [13]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    18. [18]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    19. [19]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    20. [20]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

Metrics
  • PDF Downloads(0)
  • Abstract views(99)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return