Citation: Zhang Qing-Wei, Jiang Ling, Wang Guan, Li Jian-Qi. Design, synthesis and neuroprotective effects of Fenazinel derivatives[J]. Chinese Chemical Letters, ;2017, 28(7): 1505-1508. doi: 10.116/j.cclet.2017.02.003 shu

Design, synthesis and neuroprotective effects of Fenazinel derivatives

  • Corresponding author: Zhang Qing-Wei, sipiqingwei@163.com Li Jian-Qi, lijianqb@126.com
  • * Corresponding author at: Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
  • Received Date: 24 November 2016
    Revised Date: 23 December 2016
    Accepted Date: 16 January 2017
    Available Online: 4 July 2017

Figures(3)

  • In search of novel neuroprotective agents with higher potency and lower hERG liability, a series of novel Fenazinel derivatives were designed and synthesized, among which compounds 8m-o containing amide moiety exhibited good neuroprotective effects in vitro and in vivo. Especially, the representative compound 8o showed lower activity in a patch clamp hERG K+ ion channel screen and could be considered as a lead compound for further development. These findings provided an alternative approach to the development of drugs more potent than Fenazinel for the intervention of ischemic stroke.
  • 加载中
    1. [1]

      Towfighi A., Ovbiagele B., Saver J.L.. Therapeutic milestone: stroke declines from the second to the third leading organ-and disease-specific cause of death in the United States[J]. Stroke, 2010,41:499-503. doi: 10.1161/STROKEAHA.109.571828

    2. [2]

      Fang X.H., Kronmal R.A., Li S.C.. Prevention of stroke in urban China: a community-based intervention trial[J]. Stroke, 1999,30:495-501. doi: 10.1161/01.STR.30.3.495

    3. [3]

      Fang M.C., Go A.S., Chang Y.. Long-term survival after ischemic stroke in patients with atrial fibrillation[J]. Neurology, 2014,82:1033-1037. doi: 10.1212/WNL.0000000000000248

    4. [4]

      Hsu C.Y.. Ischemic Stroke: from Basic Mechanisms to New Drug Development[J]. Karger Basel, 1998.  

    5. [5]

      Nicole O., Docagne F., Ali C.. The proteolytic activity of tissueplasminogen activator enhances NMDA receptor-mediated signaling[J]. Nat. Med., 2001,7:59-64. doi: 10.1038/83358

    6. [6]

      Molina C.A., Montaner J., Abilleira S.. Time course of tissue plasminogen activator-induced recanalization in acute cardioembolic stroke: a case-control study[J]. Stroke, 2001,32:2821-2827. doi: 10.1161/hs1201.99821

    7. [7]

      Menon B.K., Saver J.L., Prabhakaran S.. Risk score for intracranial hemorrhage in patients with acute ischemic stroke treated with intravenous tissue-type plasminogen activator[J]. Stroke, 2012,43:2293-2299. doi: 10.1161/STROKEAHA.112.660415

    8. [8]

      Cucchiara B., Tanne D., Levine S.R., Demchuk A.M., Kasner S.. A risk scoretopredict intracranial hemorrhage after recombinant tissue plasminogen activator for acute ischemic stroke[J]. J. Stroke Cerebrovasc. Dis., 2008,17:331-333. doi: 10.1016/j.jstrokecerebrovasdis.2008.03.012

    9. [9]

      Whiteley W.N., Thompson D., Murray G.. Targeting recombinant tissuetype plasminogen activator in acute ischemic stroke based on risk of intracranial hemorrhage or poor functional outcome: an analysis of the third international stroke trial[J]. Stroke, 2014,45:1000-1006. doi: 10.1161/STROKEAHA.113.004362

    10. [10]

      Feng S., Yang Q., Liu M.. Edaravone for acute ischaemic stroke[J]. Cochrane Database Syst Rev., 2011,12CD007230.  

    11. [11]

      Kitagawa Y.. Edaravone in acute ischemic stroke[J]. Int. Med., 2006,45:225-226. doi: 10.2169/internalmedicine.45.0143

    12. [12]

      Kikuchi K., Miura N., Kawahara K.. Edaravone (Radicut) a free radical scavenger, is a potentially useful addition to thrombolytic therapy in patients with acute ischemic stroke[J]. Biomed. Rep., 2013,1:7-12.  

    13. [13]

      Wada T., Yasunaga H., Inokuchi R.. Effects of edaravone on early outcomes in acute ischemic stroke patients treated with recombinant tissue plasminogen activator[J]. J. Neurol. Sci., 2014,345:106-111. doi: 10.1016/j.jns.2014.07.018

    14. [14]

      Takenaka K., Kato M., Yamauti K., Hayashi K.. Simultaneous administration of recombinant tissue plasminogen activator and edaravone in acute cerebral ischemic stroke patients[J]. J. Stroke Cerebrovasc. Dis., 2014,23:2748-2752. doi: 10.1016/j.jstrokecerebrovasdis.2014.06.016

    15. [15]

      Patel D.A.. A review on pharmacology of combined edaravone and argatroban therapy in acute ischemic stroke[J]. Pharmatutor, 2014,2:42-49.  

    16. [16]

      J. Q. Li, L. Y. Huang, Y. Min, Z. J. Weng, C. N. Zhang, Aralkyl formyl-alkyl piperazine derivatives and their uses as a cerebral nerve protective agent, US 7326710.

    17. [17]

      Li J.Q., Huang L.Y., Xia Y.Y.. Synthesis of aroylpiperazine derivatives and their anti-cerebral anoxia, anti-cerebral ischemia biological activities[J]. Chin. J. Med. Chem., 2006,16:6-14.  

    18. [18]

      Zhao T., Wei Z., Shen F.M.. Protective effects of fenazinel dihydrochloride against stroke in stroke-prone spontaneously hypertensive rats[J]. Acad. J. Second Mil. Med. Univ., 2011,32:1282-1285.  

    19. [19]

      Li D.J., Li J.Q., Huang L.Y.. Protective effects of fenazinel dihydrochloride on focal cerebral ischemic injury in rats[J]. Chin. Pharmacol. Bull., 2009,25:716-720.  

    20. [20]

      Jin L.L., Sheng Y.C., Zhong Y., Zhu P., Xia Y.Y.. Relation between therapeutic effects and administration time of fenazinel dihydrochloride on focal cerebral ischemia injury in rats[J]. Chin. J. Pharm., 2008,39:356-358.  

    21. [21]

      Chen Y.F., Min L., Zhang B., Xie B.Y.. Preparation of fenazinel dihydrochloride injection[J]. Chin. J. Pharm., 2007,38:852-854.  

    22. [22]

      Huang L.Y., Weng Z.J., Huang L., Li J.Q.. Synthesis of fenazinel dihydrochloride[J]. Chin. J. Pharm., 2007,38:191-193.  

    23. [23]

      Wang W.Y., Shen C.W., Weng Z.J.. synthesis and biological evaluation of novel dicarbonylalkyl piperazine derivatives as neuroprotective agents[J]. Chin. Chem. Lett., 2016,27:387-390. doi: 10.1016/j.cclet.2015.11.002

    24. [24]

      Recanatini M., Poluzzi E., Masetti M., Cavalli A., De Ponti F.D.. QT prolongation through hERG K+ channel blockade: Current knowledge and strategies for the early prediction during drug development[J]. Med. Res. Rev., 2005,25:133-166. doi: 10.1002/(ISSN)1098-1128

    25. [25]

      Dubin A.E., Nasser N., Rohrbacher J.. Identifying modulators of hERG channel activity using the PatchXpress® planar patch clamp[J]. J. Biomol. Screen., 2005,10:168-181. doi: 10.1177/1087057104272295

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    5. [5]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    6. [6]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    7. [7]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    8. [8]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    9. [9]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    10. [10]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    11. [11]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    12. [12]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    13. [13]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    14. [14]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    15. [15]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    16. [16]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    17. [17]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    18. [18]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    19. [19]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    20. [20]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

Metrics
  • PDF Downloads(1)
  • Abstract views(736)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return