Citation: Lei Wang, Panpan Zhang, Zhiyuan Guo, Jing Wang, Jie Ma, Zhi-yong Ji. Electrochemical lithium extraction by the faradaic materials: advances, challenges and enhancement approaches[J]. Acta Physico-Chimica Sinica, ;2026, 42(1): 100127. doi: 10.1016/j.actphy.2025.100127 shu

Electrochemical lithium extraction by the faradaic materials: advances, challenges and enhancement approaches

  • The rapid growth of the electric vehicle industry has led to a surge in demand for lithium products, driving the development of advanced lithium extraction technologies. Among these, electrochemical lithium extraction has emerged as a promising approach due to its superior lithium selectivity towards competing cations (like Na+ and Mg2+), high energy efficiency, and environmental sustainability. Many works about the faradaic materials, operation modes/parameters, and cell configurations have been published. Although some reviews about electrochemical lithium extraction technology have been published, there remains a lack of comprehensive reviews that systematically summarize advancements of faradaic materials employed in lithium extraction, analyze how their nature affects the lithium extraction performance, and elucidate the relationship between performance-enhancing strategies and their impact on critical extraction metrics. Here, we systematically introduce the principle of electrochemical lithium extraction technologies and all the performance indices reported in the literature, including the lithium intercalation capacity, lithium extraction rate, capacity retention, selectivity factor (or purity), energy consumption, and current efficiency. We present a comprehensive analysis of the reported faradaic materials used to extract lithium, involving LiFePO4, LiMn2O4, layered nickel cobalt manganese oxides, Li3V2(PO4)3, and Li1.6Mn1.6O4, establish the interconnection between their attributes and performance, and compare the advantages and disadvantages of each material. Furthermore, we categorize and evaluate different performance-enhancing strategies, including material-design approaches (e.g., 3D structure fabrication, crystal regulation, element doping, and surface coating) and operation-optimized methods in water-flow direction, circuit operation mode, and operation parameters; we further clarify how each method influences specific aspects of electrochemical lithium extraction performance and the underlying mechanisms responsible for these improvements. The industrialization progress of electrochemical lithium extraction technology based on each faradaic material is reviewed, and the cost of these materials is introduced. By establishing a connection between material design, operational optimization, and performance outcomes, this review aims to provide valuable insights for researchers and engineers working on the next generation of faradaic materials employed in electrochemical lithium extraction and to inspire innovative approaches in faradaic material development and process optimization, paving the way for more sustainable and cost-effective lithium recovery from brines.
  • 加载中
    1. [1]

      A.-M. Desaulty, D. Monfort Climent, G. Lefebvre, A. Cristiano-Tassi, D. Peralta, S. Perret, A. Urban, C. Guerrot, Nat. Commun. 13 (2022) 4172, https://doi.org/10.1038/s41467-022-31850-y.  doi: 10.1038/s41467-022-31850-y

    2. [2]

      B. Swain, Sep. Purif. Technol. 172 (2017) 388, https://doi.org/10.1016/j.seppur.2016.08.031.  doi: 10.1016/j.seppur.2016.08.031

    3. [3]

      A. Z. Haddad, L. Hackl, B. Akuzum, G. Pohlman, J.-F. Magnan, R. Kostecki, Nature 616 (2023) 245, https://doi.org/10.1038/d41586-023-00978-2.  doi: 10.1038/d41586-023-00978-2

    4. [4]

      J. C. Kelly, M. Wang, Q. Dai, O. Winjobi, Resour. Conserv. Recycl. 174 (2021) 105762, https://doi.org/10.1016/j.resconrec.2021.105762.  doi: 10.1016/j.resconrec.2021.105762

    5. [5]

      Y. Xiong, J. Zhou, P. Lu, J. Yin, Y. Wang, Z. Fan, Matter 5 (2022) 1760, https://doi.org/10.1016/j.matt.2022.04.034.  doi: 10.1016/j.matt.2022.04.034

    6. [6]

      L. Kölbel, T. Kölbel, L. Herrmann, E. Kaymakci, I. Ghergut, A. Poirel, J. Schneider, Hydrometallurgy 221 (2023) 106131, https://doi.org/10.1016/j.hydromet.2023.106131.  doi: 10.1016/j.hydromet.2023.106131

    7. [7]

      Q. Liu, P. Yang, W. Tu, H. Sun, S. Li, Y. Zhang, J. Water Process Eng. 55 (2023) 104148, https://doi.org/10.1016/j.jwpe.2023.104148.  doi: 10.1016/j.jwpe.2023.104148

    8. [8]

      W. Zhang, X. Che, D. Pei, X. Zhang, Y. Chen, M. Li, C. Li, Exploration 2 (2022) 20220050, https://doi.org/10.1002/EXP.20220050.  doi: 10.1002/EXP.20220050

    9. [9]

      Y. Zhang, Y. Hu, L. Wang, W. Sun, Miner. Eng. 139 (2019) 105868, https://doi.org/10.1016/j.mineng.2019.105868.  doi: 10.1016/j.mineng.2019.105868

    10. [10]

      X. Xu, Y. Chen, P. Wan, K. Gasem, K. Wang, T. He, H. Adidharma, M. Fan, Prog. Mater Sci. 84 (2016) 276, https://doi.org/10.1016/j.pmatsci.2016.09.004.  doi: 10.1016/j.pmatsci.2016.09.004

    11. [11]

      J. Hou, H. Zhang, A. W. Thornton, A. J. Hill, H. Wang, K. Konstas, Adv. Funct. Mater. 31 (2021) 2105991, https://doi.org/10.1002/adfm.202105991.  doi: 10.1002/adfm.202105991

    12. [12]

      Q. He, N. J. Williams, J. H. Oh, V. M. Lynch, S. K. Kim, B. A. Moyer, J. L. Sessler, Angew. Chem. Int. Ed. 57 (2018) 11924, https://doi.org/10.1002/anie.201805127.  doi: 10.1002/anie.201805127

    13. [13]

      Y. Zeng, W. Li, Z. Wan, S. Qin, Q. Huang, W. Cai, Q. Wang, M. Yao, Y. Zhang, Adv. Funct. Mater. 34 (2024) 2400416, https://doi.org/10.1002/adfm.202400416.  doi: 10.1002/adfm.202400416

    14. [14]

      A. Battistel, M. S. Palagonia, D. Brogioli, F. La Mantia, R. Trócoli, Adv. Mater. 32 (2020) 1905440, https://doi.org/10.1002/adma.201905440.  doi: 10.1002/adma.201905440

    15. [15]

      J. F. Song, L. D. Nghiem, X.-M. Li, T. He, Environ. Sci. Water Res. Technol. 3 (2017) 593, https://doi.org/10.1039/C7EW00020K.  doi: 10.1039/C7EW00020K

    16. [16]

      L. Baudino, C. Santos, C. F. Pirri, F. La Mantia, A. Lamberti, Adv. Sci. 9 (2022) 2201380, https://doi.org/10.1002/advs.202201380.  doi: 10.1002/advs.202201380

    17. [17]

      S. Xu, J. Song, Q. Bi, Q. Chen, W.-M. Zhang, Z. Qian, L. Zhang, S. Xu, N. Tang, T. He, J. Membr. Sci. 635 (2021) 119441, https://doi.org/10.1016/j.memsci.2021.119441.  doi: 10.1016/j.memsci.2021.119441

    18. [18]

      X. Li, Y. Mo, W. Qing, S. Shao, C. Y. Tang, J. Li, J. Membr. Sci. 591 (2019) 117317, https://doi.org/10.1016/j.memsci.2019.117317.  doi: 10.1016/j.memsci.2019.117317

    19. [19]

      S. Zavahir, T. Elmakki, M. Gulied, Z. Ahmad, L. Al-Sulaiti, H. K. Shon, Y. Chen, H. Park, B. Batchelor, D. S. Han, Desalination 500 (2021) 114883, https://doi.org/10.1016/j.desal.2020.114883.  doi: 10.1016/j.desal.2020.114883

    20. [20]

      J. Farahbakhsh, F. Arshadi, Z. Mofidi, M. Mohseni-Dargah, C. Kök, M. Assefi, A. Soozanipour, M. Zargar, M. Asadnia, Y. Boroumand, V. Presser, A. Razmjou, Desalination 575 (2024) 117249, https://doi.org/10.1016/j.desal.2023.117249.  doi: 10.1016/j.desal.2023.117249

    21. [21]

      H. Kanoh, K. Ooi, Y. Miyai, S. Katoh, Langmuir 7 (1991) 1841, https://doi.org/10.1021/la00057a002.  doi: 10.1021/la00057a002

    22. [22]

      H. Kanoh, K. Ooi, Y. Miyai, S. Katoh, Sep. Sci. Technol. 28 (1993) 643, https://doi.org/10.1080/01496399308019512.  doi: 10.1080/01496399308019512

    23. [23]

      M. Pasta, A. Battistel, F. La Mantia, Energy Environ. Sci. 5 (2012) 9487, https://doi.org/10.1039/C2EE22977C.  doi: 10.1039/C2EE22977C

    24. [24]

      Z. Zhao, X. Si, X. Liu, L. He, X. Liang, Hydrometallurgy 133 (2013) 75, https://doi.org/10.1016/j.hydromet.2012.11.013.  doi: 10.1016/j.hydromet.2012.11.013

    25. [25]

      L. Wang, K. Frisella, P. Srimuk, O. Janka, G. Kickelbick, V. Presser, Sustainable Energy Fuels 5 (2021) 3124, https://doi.org/10.1039/D1SE00450F.  doi: 10.1039/D1SE00450F

    26. [26]

      H. Zhang, Z. Huang, L. Zhao, Z. Guo, J. Wang, J. Liu, Y. Zhao, F. Li, P. Zhang, Z.-Y. Ji, Chem. Eng. J. 482 (2024) 148802, https://doi.org/10.1016/j.cej.2024.148802.  doi: 10.1016/j.cej.2024.148802

    27. [27]

      X. Meng, Y. Jing, J. Li, Z. Sun, Z. Wu, Chem. Eng. Sci. 283 (2024) 119400, https://doi.org/10.1016/j.ces.2023.119400.  doi: 10.1016/j.ces.2023.119400

    28. [28]

      X. Zhao, H. Yang, Y. Wang, L. Yang, L. Zhu, Sep. Purif. Technol. 274 (2021) 119078, https://doi.org/10.1016/j.seppur.2021.119078.  doi: 10.1016/j.seppur.2021.119078

    29. [29]

      L. L. Missoni, F. Marchini, M. Del Pozo, E. J. Calvo, J. Electrochem. Soc. 163 (2016) A1898, https://doi.org/10.1149/2.0591609jes.  doi: 10.1149/2.0591609jes

    30. [30]

      R. Trócoli, C. Erinmwingbovo, F. La Mantia, ChemElectroChem 4 (2017) 143, https://doi.org/10.1002/celc.201600509.  doi: 10.1002/celc.201600509

    31. [31]

      M.-Y. Zhao, Z.-Y. Ji, Y.-G. Zhang, Z.-Y. Guo, Y.-Y. Zhao, J. Liu, J.-S. Yuan, Electrochim. Acta 252 (2017) 350, https://doi.org/10.1016/j.electacta.2017.08.178.  doi: 10.1016/j.electacta.2017.08.178

    32. [32]

      S. Kim, J. S. Kang, H. Joo, Y.-E. Sung, J. Yoon, Environ. Sci. Technol. 54 (2020) 9044, https://doi.org/10.1021/acs.est.9b07646.  doi: 10.1021/acs.est.9b07646

    33. [33]

      K. Sun, M. Tebyetekerwa, X. Zeng, Z. Wang, T. T. Duignan, X. Zhang, Environ. Sci. Technol. 58 (2024) 3997, https://doi.org/10.1021/acs.est.3c09111.  doi: 10.1021/acs.est.3c09111

    34. [34]

      V. C. E. Romero, D. S. Putrino, M. Tagliazucchi, V. Flexer, E. J. Calvo, J. Electrochem. Soc. 168 (2021) 020518, https://doi.org/10.1149/1945-7111/abde81.  doi: 10.1149/1945-7111/abde81

    35. [35]

      H. Joo, S. Y. Jung, S. Kim, K. H. Ahn, W. S. Ryoo, J. Yoon, ACS Sustainable Chem. Eng. 8 (2020) 9622, https://doi.org/10.1021/acssuschemeng.9b07427.  doi: 10.1021/acssuschemeng.9b07427

    36. [36]

      R. Trócoli, A. Battistel, F. La Mantia, ChemSusChem 8 (2015) 2514, https://doi.org/10.1002/cssc.201500368.  doi: 10.1002/cssc.201500368

    37. [37]

      Y. Kondo, T. Abe, Y. Yamada, ACS Appl. Mater. Interfaces 14 (2022) 22706, https://doi.org/10.1021/acsami.1c21683.  doi: 10.1021/acsami.1c21683

    38. [38]

      N. V. Kosova, O. A. Podgornova, Y. M. Volfkovich, V. E. Sosenkin, J. Solid State Electrochem. 25 (2021) 1029, https://doi.org/10.1007/s10008-020-04877-8.  doi: 10.1007/s10008-020-04877-8

    39. [39]

      Y. Zhang, C. Prehal, H. Jiang, Y. Liu, G. Feng, V. Presser, Cell Rep. Phys. Sci. 3 (2022) 100689, https://doi.org/10.1016/j.xcrp.2021.100689.  doi: 10.1016/j.xcrp.2021.100689

    40. [40]

      A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd ed.; John Wiley & Sons: the United States of America, 2001; pp. 7–20.

    41. [41]

      P. Sebastián-Pascual, Y. Shao-Horn, M. Escudero-Escribano, Curr. Opin. Electrochem. 32 (2022) 100918, https://doi.org/10.1016/j.coelec.2021.100918.  doi: 10.1016/j.coelec.2021.100918

    42. [42]

      S. Fleischmann, J. B. Mitchell, R. Wang, C. Zhan, D.-E. Jiang, V. Presser, V. Augustyn, Chem. Rev. 120 (2020) 6738, https://doi.org/10.1021/acs.chemrev.0c00170.  doi: 10.1021/acs.chemrev.0c00170

    43. [43]

      S. Cui, Y. Wei, T. Liu, W. Deng, Z. Hu, Y. Su, H. Li, M. Li, H. Guo, Y. Duan, W. Wang, M. Rao, J. Zheng, X. Wang, F. Pan, Adv. Energy Mater. 6 (2016) 1501309, https://doi.org/10.1002/aenm.201501309.  doi: 10.1002/aenm.201501309

    44. [44]

      Y. Wei, J. Zheng, S. Cui, X. Song, Y. Su, W. Deng, Z. Wu, X. Wang, W. Wang, M. Rao, Y. Lin, C. Wang, K. Amine, F. Pan, J. Am. Chem. Soc. 137 (2015) 8364, https://doi.org/10.1021/jacs.5b04040.  doi: 10.1021/jacs.5b04040

    45. [45]

      Z. Chen, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, Adv. Energy Mater. 12 (2022) 2201506, https://doi.org/10.1002/aenm.202201506.  doi: 10.1002/aenm.202201506

    46. [46]

      M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N. R. Levy, P. Minnmann, L. Stolz, T. Waldmann, M. Wohlfahrt-Mehrens, D. Aurbach, M. Winter, Y. Ein-Eli, J. Janek, Adv. Energy Mater. 11 (2021) 2101126, https://doi.org/10.1002/aenm.202101126.  doi: 10.1002/aenm.202101126

    47. [47]

      G. Yan, M. Wang, G. T. Hill, S. Zou, C. Liu, Proc. Natl. Acad. Sci. 119 (2022) e2200751119, https://doi.org/10.1073/pnas.2200751119.  doi: 10.1073/pnas.2200751119

    48. [48]

      W. Xu, D. Liu, X. Liu, D. Wang, L. He, Z. Zhao, Desalination 546 (2023) 116188, https://doi.org/10.1016/j.desal.2022.116188.  doi: 10.1016/j.desal.2022.116188

    49. [49]

      Z. Zhang, J. Zhang, Z. Zhang, X. Du, X. Hao, X. An, G. Guan, J. Li, Z. Liu, Sep. Purif. Technol. 316 (2023) 123777, https://doi.org/10.1016/j.seppur.2023.123777.  doi: 10.1016/j.seppur.2023.123777

    50. [50]

      D.-F. Liu, S.-Y. Sun, J.-G. Yu, The Canadian Journal of Chemical Engineering 97 (2019) 1589, https://doi.org/10.1002/cjce.23370.  doi: 10.1002/cjce.23370

    51. [51]

      M. S. Palagonia, D. Brogioli, F. L. Mantia, J. Electrochem. Soc. 164 (2017) E586, https://doi.org/10.1149/2.1531714jes.  doi: 10.1149/2.1531714jes

    52. [52]

      W.-J. Zhang, J. Power Sources 196 (2011) 2962, https://doi.org/10.1016/j.jpowsour.2010.11.113.  doi: 10.1016/j.jpowsour.2010.11.113

    53. [53]

      S.-I. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada, Nat. Mater. 7 (2008) 707, https://doi.org/10.1038/nmat2251.  doi: 10.1038/nmat2251

    54. [54]

      H. Zhang, Z. Zou, S. Zhang, J. Liu, S. Zhong, Int. J. Electrochem. Sci. 15 (2020) 12041, https://doi.org/10.20964/2020.12.71.  doi: 10.20964/2020.12.71

    55. [55]

      D. Morgan, A. Van Der Ven, G. Ceder, Electrochem. Solid-State Lett. 7 (2004) A30, https://doi.org/10.1149/1.1633511.  doi: 10.1149/1.1633511

    56. [56]

      M. S. Islam, D. J. Driscoll, C. a. J. Fisher, P. R. Slater, Chem. Mater. 17 (2005) 5085, https://doi.org/10.1021/cm050999v.  doi: 10.1021/cm050999v

    57. [57]

      Y. Zou, S. Chen, X. Yang, N. Ma, Y. Xia, D. Yang, S. Guo, Adv. Energy Mater. 6 (2016) 1601549, https://doi.org/10.1002/aenm.201601549.  doi: 10.1002/aenm.201601549

    58. [58]

      C. a. J. Fisher, V. M. Hart Prieto, M. S. Islam, Chem. Mater. 20 (2008) 5907, https://doi.org/10.1021/cm801262x.  doi: 10.1021/cm801262x

    59. [59]

      J. Yang, J. S. Tse, The Journal of Physical Chemistry A 115 (2011) 13045, https://doi.org/10.1021/jp205057d.  doi: 10.1021/jp205057d

    60. [60]

      S. Zhou, P. Wang, S. Tang, J. Zhang, S. Gu, J. Yu, Desalination 592 (2024) 118153, https://doi.org/10.1016/j.desal.2024.118153.  doi: 10.1016/j.desal.2024.118153

    61. [61]

      M. Du, J.-Z. Guo, S.-H. Zheng, Y. Liu, J.-L. Yang, K.-Y. Zhang, Z.-Y. Gu, X.-T. Wang, X.-L. Wu, Chin. Chem. Lett. 34 (2023) 107706, https://doi.org/10.1016/j.cclet.2022.07.049.  doi: 10.1016/j.cclet.2022.07.049

    62. [62]

      A. Urban, D.-H. Seo, G. Ceder, npj Comput. Mater. 2 (2016) 16002, https://doi.org/10.1038/npjcompumats.2016.2.  doi: 10.1038/npjcompumats.2016.2

    63. [63]

      C. Liu, Z. G. Neale, G. Cao, Mater. Today 19 (2016) 109, https://doi.org/10.1016/j.mattod.2015.10.009.  doi: 10.1016/j.mattod.2015.10.009

    64. [64]

      A. Van Der Ven, J. Bhattacharya, A. A. Belak, Acc. Chem. Res. 46 (2013) 1216, https://doi.org/10.1021/ar200329r.  doi: 10.1021/ar200329r

    65. [65]

      C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, F. Weill, Nat. Mater. 7 (2008) 665, https://doi.org/10.1038/nmat2230.  doi: 10.1038/nmat2230

    66. [66]

      C. Delacourt, P. Poizot, J.-M. Tarascon, C. Masquelier, Nat. Mater. 4 (2005) 254, https://doi.org/10.1038/nmat1335.  doi: 10.1038/nmat1335

    67. [67]

      G. Kobayashi, S.-I. Nishimura, M.-S. Park, R. Kanno, M. Yashima, T. Ida, A. Yamada, Adv. Funct. Mater. 19 (2009) 395, https://doi.org/10.1002/adfm.200801522.  doi: 10.1002/adfm.200801522

    68. [68]

      N. Sharma, X. Guo, G. Du, Z. Guo, J. Wang, Z. Wang, V. K. Peterson, J. Am. Chem. Soc. 134 (2012) 7867, https://doi.org/10.1021/ja301187u.  doi: 10.1021/ja301187u

    69. [69]

      H. Liu, F. C. Strobridge, O. J. Borkiewicz, K. M. Wiaderek, K. W. Chapman, P. J. Chupas, C. P. Grey, Science 344 (2014) 1252817, https://doi.org/10.1126/science.1252817.  doi: 10.1126/science.1252817

    70. [70]

      P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.-M. Tarascon, C. Masquelier, Nat. Mater. 7 (2008) 741, https://doi.org/10.1038/nmat2245.  doi: 10.1038/nmat2245

    71. [71]

      J. Lu, S. C. Chung, S.-I. Nishimura, A. Yamada, Chem. Mater. 25 (2013) 4557, https://doi.org/10.1021/cm402617b.  doi: 10.1021/cm402617b

    72. [72]

      Z.-W. Zhao, X.-F. Si, X.-X. Liang, X.-H. Liu, L.-H. He, Transactions of Nonferrous Metals Society of China 23 (2013) 1157, https://doi.org/10.1016/S1003-6326(13)62578-9.  doi: 10.1016/S1003-6326(13)62578-9

    73. [73]

      S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Energy Environ. Sci. 4 (2011) 3680, https://doi.org/10.1039/C1EE01782A.  doi: 10.1039/C1EE01782A

    74. [74]

      T. Zhang, D. Li, Z. Tao, J. Chen, Prog. Nat. Sci. : Mater. Int. 23 (2013) 256, https://doi.org/10.1016/j.pnsc.2013.04.005.  doi: 10.1016/j.pnsc.2013.04.005

    75. [75]

      Y. Huang, Y. Dong, S. Li, J. Lee, C. Wang, Z. Zhu, W. Xue, Y. Li, J. Li, Adv. Energy Mater. 11 (2021) 2000997, https://doi.org/10.1002/aenm.202000997.  doi: 10.1002/aenm.202000997

    76. [76]

      R. A. House, G. J. Rees, M. A. Pérez-Osorio, J.-J. Marie, E. Boivin, A. W. Robertson, A. Nag, M. Garcia-Fernandez, K.-J. Zhou, P. G. Bruce, Nat. Energy 5 (2020) 777, https://doi.org/10.1038/s41560-020-00697-2.  doi: 10.1038/s41560-020-00697-2

    77. [77]

      W. Xu, L. He, Z. Zhao, Desalination 503 (2021) 114935, https://doi.org/10.1016/j.desal.2021.114935.  doi: 10.1016/j.desal.2021.114935

    78. [78]

      J. Rodríguez-Carvajal, G. Rousse, C. Masquelier, M. Hervieu, Phys. Rev. Lett. 81 (1998) 4660, https://doi.org/10.1103/PhysRevLett.81.4660.  doi: 10.1103/PhysRevLett.81.4660

    79. [79]

      S. Liu, B. Wang, X. Zhang, S. Zhao, Z. Zhang, H. Yu, Matter 4 (2021) 1511, https://doi.org/10.1016/j.matt.2021.02.023.  doi: 10.1016/j.matt.2021.02.023

    80. [80]

      M. A. Halcrow, Chem. Soc. Rev. 42 (2013) 1784, https://doi.org/10.1039/C2CS35253B.  doi: 10.1039/C2CS35253B

    81. [81]

      J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 135 (2013) 1167, https://doi.org/10.1021/ja3091438.  doi: 10.1021/ja3091438

    82. [82]

      J. Ren, H. Zhu, Y. Fang, W. Li, S. Lan, S. Wei, Z. Yin, Y. Tang, Y. Ren, Q. Liu, Carbon Neutralization 2 (2023) 339, https://doi.org/10.1002/cnl2.62.  doi: 10.1002/cnl2.62

    83. [83]

      M. Okubo, Y. Mizuno, H. Yamada, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, ACS Nano 4 (2010) 741, https://doi.org/10.1021/nn9012065.  doi: 10.1021/nn9012065

    84. [84]

      T. Liu, A. Dai, J. Lu, Y. Yuan, Y. Xiao, L. Yu, M. Li, J. Gim, L. Ma, J. Liu, C. Zhan, L. Li, J. Zheng, Y. Ren, T. Wu, R. Shahbazian-Yassar, J. Wen, F. Pan, K. Amine, Nat. Commun. 10 (2019) 4721, https://doi.org/10.1038/s41467-019-12626-3.  doi: 10.1038/s41467-019-12626-3

    85. [85]

      P. Wang, S. Zhou, Y. Fu, H. Fang, S. Gu, J. Yu, Desalination 581 (2024) 117618, https://doi.org/10.1016/j.desal.2024.117618.  doi: 10.1016/j.desal.2024.117618

    86. [86]

      J. Yu, D. Fang, H. Zhang, Z. Y. Leong, J. Zhang, X. Li, H. Y. Yang, ACS Mater. Lett. 2 (2020) 1662, https://doi.org/10.1021/acsmaterialslett.0c00385.  doi: 10.1021/acsmaterialslett.0c00385

    87. [87]

      M. D. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, M. Zhang, M. S. Whittingham, Y. S. Meng, A. Van Der Ven, Adv. Energy Mater. 7 (2017) 1602888, https://doi.org/10.1002/aenm.201602888.  doi: 10.1002/aenm.201602888

    88. [88]

      K. Kang, Y. S. Meng, J. Bréger, C. P. Grey, G. Ceder, Science 311 (2006) 977, https://doi.org/10.1126/science.1122152.  doi: 10.1126/science.1122152

    89. [89]

      J. U. Choi, N. Voronina, Y.-K. Sun, S.-T. Myung, Adv. Energy Mater. 10 (2020) 2002027, https://doi.org/10.1002/aenm.202002027.  doi: 10.1002/aenm.202002027

    90. [90]

      Z. Xu, K. Song, X. Chang, L. Li, W. Zhang, Y. Xue, J. Zhang, D. Lin, Z. Liu, Q. Wang, Y. Yu, C. Yang, Carbon Neutralization 3 (2024) 832, https://doi.org/10.1002/cnl2.162.  doi: 10.1002/cnl2.162

    91. [91]

      C. Zhao, C. Wang, X. Liu, I. Hwang, T. Li, X. Zhou, J. Diao, J. Deng, Y. Qin, Z. Yang, G. Wang, W. Xu, C. Sun, L. Wu, W. Cha, I. Robinson, R. Harder, Y. Jiang, T. Bicer, J.-T. Li, W. Lu, L. Li, Y. Liu, S.-G. Sun, G.-L. Xu, K. Amine, Nat. Energy 9 (2024) 345, https://doi.org/10.1038/s41560-024-01465-2.  doi: 10.1038/s41560-024-01465-2

    92. [92]

      H.-H. Ryu, K.-J. Park, C. S. Yoon, Y.-K. Sun, Chem. Mater. 30 (2018) 1155, https://doi.org/10.1021/acs.chemmater.7b05269.  doi: 10.1021/acs.chemmater.7b05269

    93. [93]

      D. Goonetilleke, N. Sharma, W. K. Pang, V. K. Peterson, R. Petibon, J. Li, J. R. Dahn, Chem. Mater. 31 (2019) 376, https://doi.org/10.1021/acs.chemmater.8b03525.  doi: 10.1021/acs.chemmater.8b03525

    94. [94]

      C. P. Lawagon, G. M. Nisola, R. a. I. Cuevas, R. E. C. Torrejos, H. Kim, S.-P. Lee, W.-J. Chung, Sep. Purif. Technol. 212 (2019) 416, https://doi.org/10.1016/j.seppur.2018.11.046.  doi: 10.1016/j.seppur.2018.11.046

    95. [95]

      X. Zhao, M. Feng, Y. Jiao, Y. Zhang, Y. Wang, Z. Sha, Desalination 481 (2020) 114360, https://doi.org/10.1016/j.desal.2020.114360.  doi: 10.1016/j.desal.2020.114360

    96. [96]

      C. P. Lawagon, G. M. Nisola, R. a. I. Cuevas, H. Kim, S.-P. Lee, W.-J. Chung, Chem. Eng. J. 348 (2018) 1000, https://doi.org/10.1016/j.cej.2018.05.030.  doi: 10.1016/j.cej.2018.05.030

    97. [97]

      L. Britala, M. Marinaro, G. Kucinskis, J. Energy Storage 73 (2023) 108875, https://doi.org/10.1016/j.est.2023.108875.  doi: 10.1016/j.est.2023.108875

    98. [98]

      M. Jiang, P. Wang, Q. Chen, Y. Zhang, Q. Wu, L. Tan, T. Ning, L. Li, K. Zou, Chin. Chem. Lett. 36 (2025) 110040, https://doi.org/10.1016/j.cclet.2024.110040.  doi: 10.1016/j.cclet.2024.110040

    99. [99]

      W. Lin, W. Bao, J. Cai, X. Cai, H. Zhao, Y. Zhang, Y. Deng, S. Yang, Z. Zhou, Z. Liu, J. Xie, Appl. Surf. Sci. 615 (2023) 156278, https://doi.org/10.1016/j.apsusc.2022.156278.  doi: 10.1016/j.apsusc.2022.156278

    100. [100]

      M. Yang, L. Chen, H. Li, F. Wu, Energy Mater. Adv. 2022 (2022) 9842651, https://doi.org/10.34133/2022/9842651.  doi: 10.34133/2022/9842651

    101. [101]

      D. Tao, S. Wang, Y. Liu, Y. Dai, J. Yu, X. Lei, Ionics 21 (2015) 1201, https://doi.org/10.1007/s11581-015-1405-3.  doi: 10.1007/s11581-015-1405-3

    102. [102]

      X.-F. Sun, Y.-L. Xu, X.-Y. Zheng, X.-F. Meng, P. Ding, H. Ren, L. Li, Acta Phys. Chim. Sin. 31 (2015) 1513, https://doi.org/10.3866/pku.Whxb201506082.  doi: 10.3866/pku.Whxb201506082

    103. [103]

      C. Ahmani Ferdi, M. Belaiche, E. Iffer, J. Solid State Electrochem. 25 (2021) 301, https://doi.org/10.1007/s10008-020-04808-7.  doi: 10.1007/s10008-020-04808-7

    104. [104]

      X. Rui, Q. Yan, M. Skyllas-Kazacos, T. M. Lim, J. Power Sources 258 (2014) 19, https://doi.org/10.1016/j.jpowsour.2014.01.126.  doi: 10.1016/j.jpowsour.2014.01.126

    105. [105]

      J. Zhou, S. Xiang, X. Wang, D.-M. Shin, H. Zhou, Chem. Eng. J. 482 (2024) 148985, https://doi.org/10.1016/j.cej.2024.148985.  doi: 10.1016/j.cej.2024.148985

    106. [106]

      A. Gao, X. Hou, Z. Sun, S. Li, H. Li, J. Zhang, J. Mater. Chem. A 7 (2019) 20878, https://doi.org/10.1039/C9TA06080D.  doi: 10.1039/C9TA06080D

    107. [107]

      S. C. Yin, H. Grondey, P. Strobel, M. Anne, L. F. Nazar, J. Am. Chem. Soc. 125 (2003) 10402, https://doi.org/10.1021/ja034565h.  doi: 10.1021/ja034565h

    108. [108]

      J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, L. Nazar, Chem. Mater. 12 (2000) 3240, https://doi.org/10.1021/cm000345g.  doi: 10.1021/cm000345g

    109. [109]

      J. Zhang, J. Shen, H. Chu, Y. Xie, Z. Jiang, D. Gao, T. Deng, X. Yu, Chem. Eng. J. 516 (2025) 164011, https://doi.org/10.1016/j.cej.2025.164011.  doi: 10.1016/j.cej.2025.164011

    110. [110]

      J. Zhou, Y. Xu, D.-M. Shin, H. Zhou, Desalination 600 (2025) 118530, https://doi.org/10.1016/j.desal.2025.118530.  doi: 10.1016/j.desal.2025.118530

    111. [111]

      A. Gao, Z. Sun, S. Li, X. Hou, H. Li, Q. Wu, X. Xi, Dalton Trans. 47 (2018) 3864, https://doi.org/10.1039/C8DT00033F.  doi: 10.1039/C8DT00033F

    112. [112]

      Y. Tu, Z. Zhou, W. Wei, L. Guan, Y. Liu, Z. Xu, H. Liu, Z. Liu, Chem. Eng. J. 503 (2025) 158533, https://doi.org/10.1016/j.cej.2024.158533.  doi: 10.1016/j.cej.2024.158533

    113. [113]

      Y. Zhang, H. Xing, Q. Meng, Q. Liu, H. Liu, L. Yang, Sep. Purif. Technol. 348 (2024) 127739, https://doi.org/10.1016/j.seppur.2024.127739.  doi: 10.1016/j.seppur.2024.127739

    114. [114]

      F. Qian, B. Zhao, M. Guo, Z. Qian, Z. Wu, Z. Liu, Mater. Des. 194 (2020) 108867, https://doi.org/10.1016/j.matdes.2020.108867.  doi: 10.1016/j.matdes.2020.108867

    115. [115]

      H. Zhan, Y. Qiao, Z. Qian, B. Lv, Z. Wu, Z. Liu, Chem. Eng. J. 497 (2024) 154859, https://doi.org/10.1016/j.cej.2024.154859.  doi: 10.1016/j.cej.2024.154859

    116. [116]

      H. Zhan, Y. Qiao, Z. Qian, J. Li, Z. Wu, X. Hao, Z. Liu, J. Ind. Eng. Chem. 114 (2022) 142, https://doi.org/10.1016/j.jiec.2022.07.003.  doi: 10.1016/j.jiec.2022.07.003

    117. [117]

      R. Trócoli, A. Battistel, F. L. Mantia, Chemistry – A European Journal 20 (2014) 9888, https://doi.org/10.1002/chem.201403535.  doi: 10.1002/chem.201403535

    118. [118]

      C. Liu, R. Massé, X. Nan, G. Cao, Energy Storage Mater. 4 (2016) 15, https://doi.org/10.1016/j.ensm.2016.02.002.  doi: 10.1016/j.ensm.2016.02.002

    119. [119]

      P.-C. Tsai, B. Wen, M. Wolfman, M.-J. Choe, M. S. Pan, L. Su, K. Thornton, J. Cabana, Y.-M. Chiang, Energy Environ. Sci. 11 (2018) 860, https://doi.org/10.1039/C8EE00001H.  doi: 10.1039/C8EE00001H

    120. [120]

      M. Park, X. Zhang, M. Chung, G. B. Less, A. M. Sastry, J. Power Sources 195 (2010) 7904, https://doi.org/10.1016/j.jpowsour.2010.06.060.  doi: 10.1016/j.jpowsour.2010.06.060

    121. [121]

      M. M. Thackeray, K. Amine, Nat. Energy 6 (2021) 566, https://doi.org/10.1038/s41560-021-00815-8.  doi: 10.1038/s41560-021-00815-8

    122. [122]

      M. M. Thackeray, K. Amine, Nat. Energy 6 (2021) 933, https://doi.org/10.1038/s41560-021-00860-3.  doi: 10.1038/s41560-021-00860-3

    123. [123]

      J. Li, Z.-F. Ma, Chem 5 (2019) 3, https://doi.org/10.1016/j.chempr.2018.12.012.  doi: 10.1016/j.chempr.2018.12.012

    124. [124]

      W. Zhu, W. Xu, D. Liu, L. He, X. Liu, Z. Zhao, Electrochim. Acta 475 (2024) 143519, https://doi.org/10.1016/j.electacta.2023.143519.  doi: 10.1016/j.electacta.2023.143519

    125. [125]

      P. Wang, S. Zhou, X. Yao, Y. Fu, S. Gu, J. Yu, Sep. Purif. Technol. 357 (2025) 130184, https://doi.org/10.1016/j.seppur.2024.130184.  doi: 10.1016/j.seppur.2024.130184

    126. [126]

      J. Gu, G. Zhou, L. Chen, X. Li, G. Luo, L. Fan, Y. Chao, H. Ji, W. Zhu, J. Electroanal. Chem. 940 (2023) 117487, https://doi.org/10.1016/j.jelechem.2023.117487.  doi: 10.1016/j.jelechem.2023.117487

    127. [127]

      D. Liu, W. Xu, J. Xiong, L. He, Z. Zhao, Sep. Purif. Technol. 270 (2021) 118809, https://doi.org/10.1016/j.seppur.2021.118809.  doi: 10.1016/j.seppur.2021.118809

    128. [128]

      Z.-Y. Guo, Z.-Y. Ji, H.-Y. Chen, J. Liu, Y.-Y. Zhao, F. Li, J.-S. Yuan, ACS Sustainable Chem. Eng. 8 (2020) 11834, https://doi.org/10.1021/acssuschemeng.0c04359.  doi: 10.1021/acssuschemeng.0c04359

    129. [129]

      Z.-Y. Guo, Z.-Y. Ji, J. Wang, H.-Y. Chen, J. Liu, Y.-Y. Zhao, F. Li, J.-S. Yuan, Sep. Purif. Technol. 259 (2021) 118154, https://doi.org/10.1016/j.seppur.2020.118154.  doi: 10.1016/j.seppur.2020.118154

    130. [130]

      H. Zhan, Z. Qian, Y. Qiao, B. Lv, R. Liu, H. Chen, Z. Liu, ACS Nano 18 (2024) 31204, https://doi.org/10.1021/acsnano.4c09379.  doi: 10.1021/acsnano.4c09379

    131. [131]

      L. He, W. Xu, Y. Song, Y. Luo, X. Liu, Z. Zhao, Global Challenges 2 (2018) 1700079, https://doi.org/10.1002/gch2.201700079.  doi: 10.1002/gch2.201700079

    132. [132]

      J. Xiong, L. He, Z. Zhao, Desalination 535 (2022) 115822, https://doi.org/10.1016/j.desal.2022.115822.  doi: 10.1016/j.desal.2022.115822

    133. [133]

      L. Wang, Y. Zhou, W. Chen, J.-L. Jiang, Z.-H. Guo, Sep. Purif. Technol. 306 (2023) 122605, https://doi.org/10.1016/j.seppur.2022.122605.  doi: 10.1016/j.seppur.2022.122605

    134. [134]

      Z. Huang, W. Xu, Z. Zhao, D. Liu, L. He, X. Liu, Chem. Eng. J. 467 (2023) 143247, https://doi.org/10.1016/j.cej.2023.143247.  doi: 10.1016/j.cej.2023.143247

    135. [135]

      S. Sun, X. Yu, M. Li, J. Duo, Y. Guo, T. Deng, J. Cleaner Prod. 247 (2020) 119178, https://doi.org/10.1016/j.jclepro.2019.119178.  doi: 10.1016/j.jclepro.2019.119178

    136. [136]

      J. Yang, X. Shang, B. Hu, B. Zhang, Y. Wang, J. Yang, J. Liu, J. Solid State Electrochem. 27 (2023) 2029, https://doi.org/10.1007/s10008-023-05461-6.  doi: 10.1007/s10008-023-05461-6

    137. [137]

      X. Zhao, Y. Gong, K. Gao, Y. Wang, H. Y. Yang, Chem. Eng. J. 474 (2023) 145975, https://doi.org/10.1016/j.cej.2023.145975.  doi: 10.1016/j.cej.2023.145975

    138. [138]

      G. Tan, S. Wan, J.-J. Chen, H.-Q. Yu, Y. Yu, Adv. Mater. 36 (2024) 2310657, https://doi.org/10.1002/adma.202310657.  doi: 10.1002/adma.202310657

    139. [139]

      G. Tian, J. Gao, M. Wang, X. Wen, Y. Liu, J. Xiang, L. Zhang, P. Cheng, J. Zhang, N. Tang, Electrochim. Acta 475 (2024) 143361, https://doi.org/10.1016/j.electacta.2023.143361.  doi: 10.1016/j.electacta.2023.143361

    140. [140]

      J. Gu, L. Chen, X. Li, G. Luo, L. Fan, Y. Chao, H. Ji, W. Zhu, J. Energy Chem. 89 (2024) 410, https://doi.org/10.1016/j.jechem.2023.10.005.  doi: 10.1016/j.jechem.2023.10.005

    141. [141]

      G. Luo, X. Li, L. Chen, Y. Zhang, J. Gu, Y. Chao, W. Zhu, Z. Liu, C. Xu, Chem. Eng. J. 455 (2023) 140928, https://doi.org/10.1016/j.cej.2022.140928.  doi: 10.1016/j.cej.2022.140928

    142. [142]

      J. Gu, L. Chen, L. Fan, G. Luo, X. Li, X. Chen, H. Ji, Y. Chao, W. Zhu, Desalination 586 (2024) 117828, https://doi.org/10.1016/j.desal.2024.117828.  doi: 10.1016/j.desal.2024.117828

    143. [143]

      G. Luo, M. Zhou, Y. Chao, P. Cui, X. Li, L. Chen, G. Jiang, W. Zhu, Z. Liu, C. Xu, Sep. Purif. Technol. 354 (2025) 128683, https://doi.org/10.1016/j.seppur.2024.128683.  doi: 10.1016/j.seppur.2024.128683

    144. [144]

      Z. Li, I.-C. Chen, L. Cao, X. Liu, K.-W. Huang, Z. Lai, Science 385 (2024) 1438, https://doi.org/10.1126/science.adg8487.  doi: 10.1126/science.adg8487

    145. [145]

      X. Zhao, S. Yang, X. Song, Y. Wang, H. Zhang, M. Li, Y. Wang, Adv. Sci. 11 (2024) 2405176, https://doi.org/10.1002/advs.202405176.  doi: 10.1002/advs.202405176

    146. [146]

      D. Chen, Z. Zhang, T. Ma, Q. Luo, X. Du, X. Ye, X. Hao, Z. Wu, X. Wang, J. Li, Process Safety and Environmental Protection 191 (2024) 112, https://doi.org/10.1016/j.psep.2024.08.113.  doi: 10.1016/j.psep.2024.08.113

    147. [147]

      G. Liao, L. Yu, Y. Xia, Z. Wang, Z. Lu, J. Mei, H. Liu, C. Liu, Water Res. 274 (2025) 123131, https://doi.org/10.1016/j.watres.2025.123131.  doi: 10.1016/j.watres.2025.123131

    148. [148]

      Z. Hui, J. An, J. Zhou, W. Huang, G. Sun, Exploration 2 (2022) 20210237, https://doi.org/10.1002/EXP.20210237.  doi: 10.1002/EXP.20210237

    149. [149]

      R.-X. Yin, W.-G. Zhu, Z.-W. Zhao, W.-H. Xu, X.-H. Liu, L.-H. He, Sep. Purif. Technol. 338 (2024) 126375, https://doi.org/10.1016/j.seppur.2024.126375.  doi: 10.1016/j.seppur.2024.126375

    150. [150]

      J. Wang, J.-W. Fang, Z.-Y. Ji, Z.-Y. Guo, X.-W. Li, J. Liu, Y.-Y. Zhao, Z. Liu, F.-F. Gao, Y. Zhong, J.-S. Yuan, J. Environ. Chem. Eng. 11 (2023) 110878, https://doi.org/10.1016/j.jece.2023.110878.  doi: 10.1016/j.jece.2023.110878

    151. [151]

      Y. Mu, C. Zhang, W. Zhang, Y. Wang, Desalination 511 (2021) 115112, https://doi.org/10.1016/j.desal.2021.115112.  doi: 10.1016/j.desal.2021.115112

    152. [152]

      G. Ma, Y. Xu, A. Cai, H. Mao, X. Zhang, D.-M. Shin, L. Wang, H. Zhou, Small 20 (2024) 2306530, https://doi.org/10.1002/smll.202306530.  doi: 10.1002/smll.202306530

    153. [153]

      H. Zhang, L. Zhao, Z. Guo, L. Wang, Y. Ma, P. Zhang, J. Wang, Z.-Y. Ji, Environ. Sci. Technol. 59 (2025) 6881, https://doi.org/10.1021/acs.est.4c13308.  doi: 10.1021/acs.est.4c13308

    154. [154]

      M. Nakayama, H. Taki, T. Nakamura, S. Tokuda, R. Jalem, T. Kasuga, J. Phys. Chem. C 118 (2014) 27245, https://doi.org/10.1021/jp509232m.  doi: 10.1021/jp509232m

    155. [155]

      G. Zhou, L. Chen, X. Li, G. Luo, Z. Yu, J. Yin, L. Fan, Y. Chao, L. Jiang, W. Zhu, Green Energy Environ. 8 (2023) 1081, https://doi.org/10.1016/j.gee.2021.12.002.  doi: 10.1016/j.gee.2021.12.002

    156. [156]

      L. Peng, X. Zhang, Z. Fang, Y. Zhu, Y. Xie, J. J. Cha, G. Yu, Chem. Mater. 29 (2017) 10526, https://doi.org/10.1021/acs.chemmater.7b04514.  doi: 10.1021/acs.chemmater.7b04514

    157. [157]

      Y. Zhao, L. Peng, B. Liu, G. Yu, Nano Lett. 14 (2014) 2849, https://doi.org/10.1021/nl5008568.  doi: 10.1021/nl5008568

    158. [158]

      A. Yamada, H. Koizumi, S. I. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, Y. Kobayashi, Nat. Mater. 5 (2006) 357, https://doi.org/10.1038/nmat1634.  doi: 10.1038/nmat1634

    159. [159]

      X.-C. Tang, L.-X. Li, Q.-L. Lai, X.-W. Song, L.-H. Jiang, Electrochim. Acta 54 (2009) 2329, https://doi.org/10.1016/j.electacta.2008.10.065.  doi: 10.1016/j.electacta.2008.10.065

    160. [160]

      P. P. Prosini, M. Lisi, D. Zane, M. Pasquali, Solid State Ionics 148 (2002) 45, https://doi.org/10.1016/S0167-2738(02)00134-0.  doi: 10.1016/S0167-2738(02)00134-0

    161. [161]

      G. Yan, G. Kim, R. Yuan, E. Hoenig, F. Shi, W. Chen, Y. Han, Q. Chen, J.-M. Zuo, W. Chen, C. Liu, Nat. Commun. 13 (2022) 4579, https://doi.org/10.1038/s41467-022-32369-y.  doi: 10.1038/s41467-022-32369-y

    162. [162]

      Y. Wu, P. Shi, Y. Zhong, R. Cai, Energy & Fuels 37 (2023) 4083, https://doi.org/10.1021/acs.energyfuels.2c04113.  doi: 10.1021/acs.energyfuels.2c04113

    163. [163]

      C. Cai, G. M. Koenig, Electrochim. Acta 401 (2022) 139484, https://doi.org/10.1016/j.electacta.2021.139484.  doi: 10.1016/j.electacta.2021.139484

    164. [164]

      Y. K. Lee, J. Park, W. Lu, J. Electrochem. Soc. 163 (2016) A1359, https://doi.org/10.1149/2.0991607jes.  doi: 10.1149/2.0991607jes

    165. [165]

      X. Sun, R. Xiao, X. Yu, H. Li, ACS Appl. Mater. Interfaces 14 (2022) 10353, https://doi.org/10.1021/acsami.1c23478.  doi: 10.1021/acsami.1c23478

    166. [166]

      Z. Ahaliabadeh, X. Kong, E. Fedorovskaya, T. Kallio, J. Power Sources 540 (2022) 231633, https://doi.org/10.1016/j.jpowsour.2022.231633.  doi: 10.1016/j.jpowsour.2022.231633

    167. [167]

      J. Choi, S.-Y. Lee, S. Yoon, K.-H. Kim, M. Kim, S.-H. Hong, ChemSusChem 12 (2019) 2439, https://doi.org/10.1002/cssc.201900500.  doi: 10.1002/cssc.201900500

    168. [168]

      S.-Y. Chung, J. T. Bloking, Y.-M. Chiang, Nat. Mater. 1 (2002) 123, https://doi.org/10.1038/nmat732.  doi: 10.1038/nmat732

    169. [169]

      P. S. Herle, B. Ellis, N. Coombs, L. F. Nazar, Nat. Mater. 3 (2004) 147, https://doi.org/10.1038/nmat1063.  doi: 10.1038/nmat1063

    170. [170]

      M. Wagemaker, B. L. Ellis, D. Lützenkirchen-Hecht, F. M. Mulder, L. F. Nazar, Chem. Mater. 20 (2008) 6313, https://doi.org/10.1021/cm801781k.  doi: 10.1021/cm801781k

    171. [171]

      M. D. Johannes, K. Hoang, J. L. Allen, K. Gaskell, Phys. Rev. B 85 (2012) 115106, https://doi.org/10.1103/PhysRevB.85.115106.  doi: 10.1103/PhysRevB.85.115106

    172. [172]

      C. Ban, W.-J. Yin, H. Tang, S.-H. Wei, Y. Yan, A. C. Dillon, Adv. Energy Mater. 2 (2012) 1028, https://doi.org/10.1002/aenm.201200085.  doi: 10.1002/aenm.201200085

    173. [173]

      K. Hoang, M. D. Johannes, J. Power Sources 206 (2012) 274, https://doi.org/10.1016/j.jpowsour.2012.01.126.  doi: 10.1016/j.jpowsour.2012.01.126

    174. [174]

      Y. Zhang, J. A. Alarco, J. Y. Nerkar, A. S. Best, G. A. Snook, P. C. Talbot, B. C. C. Cowie, ACS Appl. Energy Mater. 3 (2020) 9158, https://doi.org/10.1021/acsaem.0c01536.  doi: 10.1021/acsaem.0c01536

    175. [175]

      F. Bizzotto, W. Dachraoui, R. Grissa, W. Zhao, F. Pagani, E. Querel, R.-S. Kühnel, C. Battaglia, Electrochim. Acta 462 (2023) 142758, https://doi.org/10.1016/j.electacta.2023.142758.  doi: 10.1016/j.electacta.2023.142758

    176. [176]

      F. Schipper, H. Bouzaglo, M. Dixit, E. M. Erickson, T. Weigel, M. Talianker, J. Grinblat, L. Burstein, M. Schmidt, J. Lampert, C. Erk, B. Markovsky, D. T. Major, D. Aurbach, Adv. Energy Mater. 8 (2018) 1701682, https://doi.org/10.1002/aenm.201701682.  doi: 10.1002/aenm.201701682

    177. [177]

      U. Nisar, N. Muralidharan, R. Essehli, R. Amin, I. Belharouak, Energy Storage Mater. 38 (2021) 309, https://doi.org/10.1016/j.ensm.2021.03.015.  doi: 10.1016/j.ensm.2021.03.015

    178. [178]

      P. Zhu, Z. Yang, H. Zhang, J. Yu, Z. Zhang, J. Cai, C. Li, J. Alloys Compd. 745 (2018) 164, https://doi.org/10.1016/j.jallcom.2018.02.119.  doi: 10.1016/j.jallcom.2018.02.119

    179. [179]

      B. Xiao, B. Wang, J. Liu, K. Kaliyappan, Q. Sun, Y. Liu, G. Dadheech, M. P. Balogh, L. Yang, T.-K. Sham, R. Li, M. Cai, X. Sun, Nano Energy 34 (2017) 120, https://doi.org/10.1016/j.nanoen.2017.02.015.  doi: 10.1016/j.nanoen.2017.02.015

    180. [180]

      Y. He, H. Pham, X. Liang, J. Park, Chem. Eng. J. 440 (2022) 135565, https://doi.org/10.1016/j.cej.2022.135565.  doi: 10.1016/j.cej.2022.135565

    181. [181]

      X. Li, J. Liu, M. N. Banis, A. Lushington, R. Li, M. Cai, X. Sun, Energy Environ. Sci. 7 (2014) 768, https://doi.org/10.1039/C3EE42704H.  doi: 10.1039/C3EE42704H

    182. [182]

      P. Guan, L. Zhou, Z. Yu, Y. Sun, Y. Liu, F. Wu, Y. Jiang, D. Chu, J. Energy Chem. 43 (2020) 220, https://doi.org/10.1016/j.jechem.2019.08.022.  doi: 10.1016/j.jechem.2019.08.022

    183. [183]

      J. Li, Q. Wu, J. Wu, Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods. In Handbook of Nanoparticles; M. Aliofkhazraei, Eds.; Springer Cham: Switzerland, 2016; pp. 295–328.

    184. [184]

      H.-H. Ryu, H.-W. Lim, S. G. Lee, Y.-K. Sun, Nat. Energy 9 (2023) 47, https://doi.org/10.1038/s41560-023-01403-8.  doi: 10.1038/s41560-023-01403-8

    185. [185]

      Y. Lin, Y. Lin, T. Zhou, G. Zhao, Y. Huang, Z. Huang, J. Power Sources 226 (2013) 20, https://doi.org/10.1016/j.jpowsour.2012.10.074.  doi: 10.1016/j.jpowsour.2012.10.074

    186. [186]

      Y. Liu, X.-J. Lin, Y.-G. Sun, Y.-S. Xu, B.-B. Chang, C.-T. Liu, A.-M. Cao, L.-J. Wan, Small 15 (2019) 1901019, https://doi.org/10.1002/smll.201901019.  doi: 10.1002/smll.201901019

    187. [187]

      Y.-F. Deng, S.-X. Zhao, Y.-H. Xu, C.-W. Nan, J. Mater. Chem. A 2 (2014) 18889, https://doi.org/10.1039/C4TA03772C.  doi: 10.1039/C4TA03772C

    188. [188]

      F. Xiong, Z. Chen, C. Huang, T. Wang, W. Zhang, Z. Yang, F. Chen, Inorg. Chem. 58 (2019) 15498, https://doi.org/10.1021/acs.inorgchem.9b02533.  doi: 10.1021/acs.inorgchem.9b02533

    189. [189]

      Z.-X. Chi, W. Zhang, X.-S. Wang, F.-Q. Cheng, J.-T. Chen, A.-M. Cao, L.-J. Wan, ACS Appl. Mater. Interfaces 6 (2014) 22719, https://doi.org/10.1021/am506860e.  doi: 10.1021/am506860e

    190. [190]

      Y. Kwon, Y. Lee, S.-O. Kim, H.-S. Kim, K. J. Kim, D. Byun, W. Choi, ACS Appl. Mater. Interfaces 10 (2018) 29457, https://doi.org/10.1021/acsami.8b08200.  doi: 10.1021/acsami.8b08200

    191. [191]

      Q. Wang, Y. Lei, Y. Wang, Y. Liu, C. Song, J. Zeng, Y. Song, X. Duan, D. Wang, Y. Li, Energy Environ. Sci. 13 (2020) 1593, https://doi.org/10.1039/D0EE00450B.  doi: 10.1039/D0EE00450B

    192. [192]

      I. Gómez-Palos, M. Vazquez-Pufleau, R. S. Schäufele, A. Mikhalchan, A. Pendashteh, Á. Ridruejo, J. J. Vilatela, Nanoscale 15 (2023) 6052, https://doi.org/10.1039/D3NR00289F.  doi: 10.1039/D3NR00289F

    193. [193]

      Q. Hou, G. Cao, P. Wang, D. Zhao, X. Cui, S. Li, C. Li, J. Alloys Compd. 747 (2018) 796, https://doi.org/10.1016/j.jallcom.2018.03.115.  doi: 10.1016/j.jallcom.2018.03.115

    194. [194]

      C. Gao, J. Zhou, G. Liu, L. Wang, Appl. Surf. Sci. 433 (2018) 35, https://doi.org/10.1016/j.apsusc.2017.10.034.  doi: 10.1016/j.apsusc.2017.10.034

    195. [195]

      Q. Gong, Y.-S. He, Y. Yang, X.-Z. Liao, Z.-F. Ma, J. Solid State Electrochem. 16 (2012) 1383, https://doi.org/10.1007/s10008-011-1538-x.  doi: 10.1007/s10008-011-1538-x

    196. [196]

      Q. Liu, Y.-T. Liu, C. Zhao, Q.-S. Weng, J. Deng, I. Hwang, Y. Jiang, C. Sun, T. Li, W. Xu, K. Du, A. Daali, G.-L. Xu, K. Amine, G. Chen, ACS Nano 16 (2022) 14527, https://doi.org/10.1021/acsnano.2c04959.  doi: 10.1021/acsnano.2c04959

    197. [197]

      L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M. H. Gharahcheshmeh, K. K. Gleason, Y. S. Choi, B. H. Hong, Z. Liu, Nat. Rev. Methods Primers 1 (2021) 5, https://doi.org/10.1038/s43586-020-00005-y.  doi: 10.1038/s43586-020-00005-y

    198. [198]

      R. W. Johnson, A. Hultqvist, S. F. Bent, Mater. Today 17 (2014) 236, https://doi.org/10.1016/j.mattod.2014.04.026.  doi: 10.1016/j.mattod.2014.04.026

    199. [199]

      S. M. George, Chem. Rev. 110 (2010) 111, https://doi.org/10.1021/cr900056b.  doi: 10.1021/cr900056b

    200. [200]

      M. Zhang, N. Garcia-Araez, Electrochim. Acta 499 (2024) 144686, https://doi.org/10.1016/j.electacta.2024.144686.  doi: 10.1016/j.electacta.2024.144686

    201. [201]

      X. Zhao, L. Zheng, Y. Hou, Y. Wang, L. Zhu, Chem. Eng. J. 450 (2022) 138454, https://doi.org/10.1016/j.cej.2022.138454.  doi: 10.1016/j.cej.2022.138454

    202. [202]

      T. Han, X. Yu, Y. Guo, M. Li, J. Duo, T. Deng, Electrochim. Acta 350 (2020) 136385, https://doi.org/10.1016/j.electacta.2020.136385.  doi: 10.1016/j.electacta.2020.136385

    203. [203]

      J. Zhang, W. Pan, Y. Zhou, C. Hai, Y. Xu, Y. Zhao, Y. Sun, S. Dong, X. He, Q. Xu, J. Chen, H. Su, L. Ma, Chemosphere 360 (2024) 142325, https://doi.org/10.1016/j.chemosphere.2024.142325.  doi: 10.1016/j.chemosphere.2024.142325

    204. [204]

      J. Zhang, Y. Zhou, C. Hai, H. Su, Y. Zhao, Y. Sun, S. Dong, X. He, Q. Xu, T. Chen, J. Xiang, S. Huang, L. Ma, Sep. Purif. Technol. 334 (2024) 126010, https://doi.org/10.1016/j.seppur.2023.126010.  doi: 10.1016/j.seppur.2023.126010

    205. [205]

      J. Zhang, Y. Zhou, C. Hai, Y. Gao, Y. Zhao, Y. Sun, S. Dong, X. He, Q. Xu, J. Chen, H. Su, L. Ma, Desalination 579 (2024) 117457, https://doi.org/10.1016/j.desal.2024.117457.  doi: 10.1016/j.desal.2024.117457

    206. [206]

      B. Hu, X. Shang, P. Nie, B. Zhang, J. Yang, J. Liu, J. Colloid Interface Sci. 612 (2022) 392, https://doi.org/10.1016/j.jcis.2021.12.181.  doi: 10.1016/j.jcis.2021.12.181

    207. [207]

      X. Du, G. Guan, X. Li, A. D. Jagadale, X. Ma, Z. Wang, X. Hao, A. Abudula, J. Mater. Chem. A 4 (2016) 13989, https://doi.org/10.1039/C6TA05985F.  doi: 10.1039/C6TA05985F

    208. [208]

      X. Zhao, G. Li, M. Feng, Y. Wang, Electrochim. Acta 331 (2020) 135285, https://doi.org/10.1016/j.electacta.2019.135285.  doi: 10.1016/j.electacta.2019.135285

    209. [209]

      B. Hu, Y. Wang, B. Zhang, X. Song, H. Jiang, J. Ma, J. Liu, Sep. Purif. Technol. 348 (2024) 127693, https://doi.org/10.1016/j.seppur.2024.127693.  doi: 10.1016/j.seppur.2024.127693

    210. [210]

      B. Mojtahedi, M. Askari, A. Dolati, N. Shahcheraghi, M. Ghorbanzadeh, Energy & Fuels 38 (2024) 19878, https://doi.org/10.1021/acs.energyfuels.4c03409.  doi: 10.1021/acs.energyfuels.4c03409

    211. [211]

      L. Gou, Y.-F. Zhang, W. Wang, J.-Y. Ying, X.-Y. Fan, Z.-Z. Zhang, Chem. Eng. J. 498 (2024) 155755, https://doi.org/10.1016/j.cej.2024.155755.  doi: 10.1016/j.cej.2024.155755

    212. [212]

      N. Xue, X. Wu, H. Shi, Y. Zhang, Y. Zhang, Y. Lv, X. Zhang, X. Chen, Y. Yu, W. Liu, ACS Nano 18 (2024) 33743, https://doi.org/10.1021/acsnano.4c15473.  doi: 10.1021/acsnano.4c15473

    213. [213]

      J. Li, L. Han, R. Wang, T. Wang, L. Pan, X. Zhang, C. Wang, Desalination 591 (2024) 118035, https://doi.org/10.1016/j.desal.2024.118035.  doi: 10.1016/j.desal.2024.118035

    214. [214]

      G. Luo, X. Li, L. Chen, J. Gu, Y. Huang, J. Sun, H. Liu, Y. Chao, W. Zhu, Z. Liu, Appl. Energy 337 (2023) 120890, https://doi.org/10.1016/j.apenergy.2023.120890.  doi: 10.1016/j.apenergy.2023.120890

    215. [215]

      L. Chen, L. Fan, D. Lan, J. Gu, C. Xiaojun, H. Ji, Y. Chao, P. Wu, W. Zhu, Chem. Eng. J. 505 (2025) 159815, https://doi.org/10.1016/j.cej.2025.159815.  doi: 10.1016/j.cej.2025.159815

    216. [216]

    217. [217]

      Y. Chen, H. Zhan, Y. Qiao, Z. Qian, B. Lv, Z. Wu, Z. Liu, Chem. Eng. J. 477 (2023) 147136, https://doi.org/10.1016/j.cej.2023.147136.  doi: 10.1016/j.cej.2023.147136

    218. [218]

      G. T. Hill, F. Shi, H. Zhou, Y. Han, C. Liu, Matter 4 (2021) 1611, https://doi.org/10.1016/j.matt.2021.02.005.  doi: 10.1016/j.matt.2021.02.005

    219. [219]

      V. C. E. Romero, K. Llano, E. J. Calvo, Electrochem. Commun. 125 (2021) 106980, https://doi.org/10.1016/j.elecom.2021.106980.  doi: 10.1016/j.elecom.2021.106980

    220. [220]

      E. N. Guyes, A. N. Shocron, A. Simanovski, P. M. Biesheuvel, M. E. Suss, Desalination 415 (2017) 8, https://doi.org/10.1016/j.desal.2017.03.013.  doi: 10.1016/j.desal.2017.03.013

    221. [221]

      Z.-Y. Guo, Z.-Y. Ji, J. Wang, X.-F. Guo, J.-S. Liang, Desalination 533 (2022) 115767, https://doi.org/10.1016/j.desal.2022.115767.  doi: 10.1016/j.desal.2022.115767

    222. [222]

      D. Liu, Z. Zhao, W. Xu, J. Xiong, L. He, Desalination 519 (2021) 115302, https://doi.org/10.1016/j.desal.2021.115302.  doi: 10.1016/j.desal.2021.115302

    223. [223]

      J. Xiong, L. He, D. Liu, W. Xu, Z. Zhao, Desalination 520 (2021) 115326, https://doi.org/10.1016/j.desal.2021.115326.  doi: 10.1016/j.desal.2021.115326

    224. [224]

      C. Liu, Y. Li, D. Lin, P.-C. Hsu, B. Liu, G. Yan, T. Wu, Y. Cui, S. Chu, Joule 4 (2020) 1459, https://doi.org/10.1016/j.joule.2020.05.017.  doi: 10.1016/j.joule.2020.05.017

    225. [225]

      M. S. Palagonia, D. Brogioli, F. La Mantia, J. Electrochem. Soc. 166 (2019) E286, https://doi.org/10.1149/2.0221910jes.  doi: 10.1149/2.0221910jes

    226. [226]

      S. Kim, J. Lee, S. Kim, S. Kim, J. Yoon, Energy Technol. 6 (2018) 340, https://doi.org/10.1002/ente.201700488.  doi: 10.1002/ente.201700488

    227. [227]

      A. Zhao, J. Liu, X. Ai, H. Yang, Y. Cao, ChemSusChem 12 (2019) 1361, https://doi.org/10.1002/cssc.201803045.  doi: 10.1002/cssc.201803045

    228. [228]

      C.-T. Hsieh, C.-T. Pai, Y.-F. Chen, P.-Y. Yu, R.-S. Juang, Electrochim. Acta 115 (2014) 96, https://doi.org/10.1016/j.electacta.2013.10.082.  doi: 10.1016/j.electacta.2013.10.082

    229. [229]

      Z. Wang, Z. Chen, Y. Li, X. Ren, X. Xiong, Z. Lu, L. Deng, Nano Energy 131 (2024) 110249, https://doi.org/10.1016/j.nanoen.2024.110249.  doi: 10.1016/j.nanoen.2024.110249

    230. [230]

      C. P. Graettinger, S. Garcia, J. Siviy, R. J. Schenk, P. J. Van Syckle, Using the Technology Readiness Levels Scale to Support Technology Management in the DoD's ATD/STO Environments. [2025-04-01]. https://insights.sei.cmu.edu/library/using-the-technology-readiness-levels-scale-to-support-technology-management-in-the-dods-atdsto-environments-a-findings-and-recommendations-report-conducted-for-army-cecom/.

    231. [231]

      L. Wu, C. Zhang, S. Kim, T. A. Hatton, H. Mo, T. D. Waite, Water Res. 221 (2022) 118822, https://doi.org/10.1016/j.watres.2022.118822.  doi: 10.1016/j.watres.2022.118822

    232. [232]

      H. Joo, S. Kim, S. Kim, M. Choi, S.-H. Kim, J. Yoon, Environ. Sci. Water Res. Technol. 6 (2020) 290, https://doi.org/10.1039/C9EW00756C.  doi: 10.1039/C9EW00756C

    233. [233]

      J. Zhang, S. Dong, X. He, Q. Xu, C. Hai, Y. Zhou, X. Zhang, L. Ma, Chemistry 86 (2023) 1044, https://doi.org/10.14159/j.cnki.0441-3776.2023.09.013.  doi: 10.14159/j.cnki.0441-3776.2023.09.013

    234. [234]

  • 加载中
    1. [1]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    2. [2]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    11. [11]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    12. [12]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-0. doi: 10.3866/PKU.WHXB202309047

    13. [13]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    14. [14]

      Tinghui ANDong XIANGJiaqi LIJiawei WANGShuming YUNan WANGKedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412

    15. [15]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    18. [18]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    19. [19]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(1)
  • Abstract views(90)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return