Polyphosphoester-modified Cellulose Nanocrystals for Stabilizing Pickering Emulsion Polymerization of Styrene
English
Polyphosphoester-modified Cellulose Nanocrystals for Stabilizing Pickering Emulsion Polymerization of Styrene
-
-
-
[1]
Ramsden, W. Separation of solids in the surface-layers of solutions and 'suspensions' (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). Preliminary Account. Proc. R. Soc. London 1903, 72, 156−164.
-
[2]
Pickering, S. U. CXCVI Emulsions. J. Chem. Soc., Trans. 1907, 91, 2001−2021. doi: 10.1039/CT9079102001
-
[3]
Chevalier, Y.; Bolzinger, M. A. Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloids Surf. A: Physicochem. Eng. Aspects 2013, 439, 23−34. doi: 10.1016/j.colsurfa.2013.02.054
-
[4]
Aveyard, R.; Binks, B. P.; Clint, J. H. Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 2003, 100-102, 503−546. doi: 10.1016/S0001-8686(02)00069-6
-
[5]
Zou, Z. M.; Sun, Z. Y.; An, L. J. Studies on droplet size distributions during coalescence in immiscible polymer blends filled with silica nanoparticles. Chinese J. Polym. Sci. 2014, 32, 255−267. doi: 10.1007/s10118-014-1411-3
-
[6]
Binks, B. P. Particles as surfactants-similarities and differences. Curr. Opin. Colloid Interface Sci. 2002, 7, 21−41. doi: 10.1016/S1359-0294(02)00008-0
-
[7]
Arditty, S.; Schmitt, V.; Giermanska-Kahn, J.; Leal-Calderon, F. Materials based on solid-stabilized emulsions. J. Colloid Interface Sci. 2004, 275, 659−664. doi: 10.1016/j.jcis.2004.03.001
-
[8]
Pang, K.; Ding, B. B.; Liu, X. T.; Wu, H.; Duan, Y. X.; Zhang, J. M. High-yield preparation of a zwitterionically charged chitin nanofiber and its application in a doubly pH-responsive Pickering emulsion. Green Chem. 2017, 19, 3665−3670. doi: 10.1039/C7GC01592E
-
[9]
Yang, F.; Liu, S. Y.; Xu, J.; Lan, Q.; Wei, F.; Sun, D. J. Pickering emulsions stabilized solely by layered double hydroxides particles: the effect of salt on emulsion formation and stability. J. Colloid Interface Sci. 2006, 302, 159−169. doi: 10.1016/j.jcis.2006.06.015
-
[10]
Tang, J. T.; Quinlan, P. J.; Tam, K. C. Stimuli-responsive Pickering emulsions: recent advances and potential applications. Soft Matter 2015, 11, 3512−3529. doi: 10.1039/C5SM00247H
-
[11]
Björkegren, S.; Nordstierna, L.; Törncrona, A.; Palmqvist, A. Hydrophilic and hydrophobic modifications of colloidal silica particles for Pickering emulsions. J. Colloid Interface Sci. 2017, 487, 250−257. doi: 10.1016/j.jcis.2016.10.031
-
[12]
Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J. X. Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 2010, 132, 8180−8186. doi: 10.1021/ja102777p
-
[13]
Cui, Z. G.; Cui, C. F.; Zhu, Y.; Binks, B. P. Multiple phase inversion of emulsions stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of fatty acids. Langmuir 2012, 28, 314−320. doi: 10.1021/la204021v
-
[14]
Voorn, D. J.; Ming, W.; van Herk, A. M. Polymer-clay nanocomposite latex particles by inverse Pickering emulsion polymerization stabilized with hydrophobic montmorillonite platelets. Macromolecules 2006, 39, 2137−2143. doi: 10.1021/ma052539t
-
[15]
Wei, D.; Ge, L. L.; Lu, S. H.; Li, J. J.; Guo, R. Janus particles templated by Janus emulsions and application as a Pickering emulsifier. Langmuir 2017, 33, 5819−5828. doi: 10.1021/acs.langmuir.7b00939
-
[16]
Wei, W.; Wang, T.; Luo, J.; Zhu, Y.; Gu, Y.; Liu, X. Y. Pickering emulsions stabilized by self-assembled colloidal particles of amphiphilic branched random poly(styrene-co-acrylic acid). Colloids Surf. A: Physicochem. Eng. Aspects 2015, 487, 58−65. doi: 10.1016/j.colsurfa.2015.09.060
-
[17]
Li, C.; Sun, P. D.; Yang, C. Emulsion stabilized by starch nanocrystals. Starch 2012, 64, 497−502. doi: 10.1002/star.201100178
-
[18]
Kalashnikova, I.; Bizot, H.; Cathala, B.; Capron, I. New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 2011, 27, 7471−7479. doi: 10.1021/la200971f
-
[19]
Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263−1334. doi: 10.1016/j.pmatsci.2007.06.001
-
[20]
Tang, J. T.; Sisler, J.; Grishkewich, N.; Tam, K. C. Functionalization of cellulose nanocrystals for advanced applications. J. Colloid Interface Sci. 2017, 494, 397−409. doi: 10.1016/j.jcis.2017.01.077
-
[21]
Gómez H, C.; Serpa, A.; Velásquez-Cock, J.; Gañán, P.; Castro, C.; Vélez, L.; Zuluaga, R. Vegetable nanocellulose in food science: a review. Food Hydrocolloids 2016, 57, 178−186. doi: 10.1016/j.foodhyd.2016.01.023
-
[22]
Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941−3994. doi: 10.1039/c0cs00108b
-
[23]
Mazeau, K.; Heux, L. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J. Phys. Chem. B 2003, 107, 2394−2403.
-
[24]
Oza, K. P.; Frank, S. G. Microcrystalline cellulose stabilized emulsions. J. Dispersion Sci. Technol. 1986, 7, 543−561. doi: 10.1080/01932698608943478
-
[25]
Li, X.; Ding, L.; Zhang, Y. C.; Wang, B. J.; Jiang, Y.; Feng, X. L.; Mao, Z. P.; Sui, X. F. Oil-in-water Pickering emulsions from three plant-derived regenerated celluloses. Carbohydr. Polym. 2019, 207, 755−763. doi: 10.1016/j.carbpol.2018.12.037
-
[26]
Saelices, C. J.; Save, M.; Capron, I. Synthesis of latex stabilized by unmodified cellulose nanocrystals: the effect of monomers on particle size. Polym. Chem. 2019, 10, 727−737. doi: 10.1039/C8PY01575A
-
[27]
Saelices, C. J.; Capron, I. Design of Pickering micro- and nanoemulsions based on the structural characteristics of nanocelluloses. Biomacromolecules 2018, 19, 460−469. doi: 10.1021/acs.biomac.7b01564
-
[28]
Xu, H. N.; Li, Y. H.; Zhang, L. F. Driving forces for accumulation of cellulose nanofibrils at the oil/water interface. Langmuir 2018, 34, 10757−10763. doi: 10.1021/acs.langmuir.8b02310
-
[29]
Bai, L.; Huan, S. Q.; Xiang, W. C.; Rojas, O. J. Pickering emulsions by combining cellulose nanofibrils and nanocrystals: phase behavior and depletion stabilization. Green Chem. 2018, 20, 1571−1582. doi: 10.1039/C8GC00134K
-
[30]
Lee, K. Y.; Blaker, J. J.; Murakami, R.; Heng, J. Y. Y.; Bismarck, A. Phase behavior of medium and high internal phase water-in-oil emulsions stabilized solely by hydrophobized bacterial cellulose nanofibrils. Langmuir 2014, 30, 452−460. doi: 10.1021/la4032514
-
[31]
Cunha, A. G.; Mougel, J. B.; Cathala, B.; Berglund, L. A.; Capron, I. Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses. Langmuir 2014, 30, 9327−9335. doi: 10.1021/la5017577
-
[32]
Kalashnikova, I.; Bizot, H.; Bertoncini, P.; Cathala, B.; Capron, I. Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 2013, 9, 952−959. doi: 10.1039/C2SM26472B
-
[33]
Zhang, Y. F.; Karimkhani, V.; Makowski, B. T.; Samaranayake, G.; Rowan, S. J. Nanoemulsions and nanolatexes stabilized by hydrophobically functionalized cellulose nanocrystals. Macromolecules 2017, 50, 6032−6042. doi: 10.1021/acs.macromol.7b00982
-
[34]
Habibi, Y.; Lucia, L. A.; Rojas, O. J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 2010, 110, 3479−3500. doi: 10.1021/cr900339w
-
[35]
Kalashnikova, I.; Bizot, H.; Cathala, B.; Capron, I. Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromolecules 2012, 13, 267−275. doi: 10.1021/bm201599j
-
[36]
Capron, I.; Cathala, B. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules 2013, 14, 291−296. doi: 10.1021/bm301871k
-
[37]
Peddireddy, K. R.; Nicolai, T.; Benyahia, L.; Capron, I. Stabilization of water-in-water emulsions by nanorods. ACS Macro Lett. 2016, 5, 283−286. doi: 10.1021/acsmacrolett.5b00953
-
[38]
Cherhal, F.; Cousin, F.; Capron, I. Structural description of the interface of Pickering emulsions stabilized by cellulose nanocrystals. Biomacromolecules 2016, 17, 496−502. doi: 10.1021/acs.biomac.5b01413
-
[39]
Hu, Z.; Ballinger, S.; Pelton, R.; Cranston, E. D. Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J. Colloid Interface Sci. 2015, 439, 139−148. doi: 10.1016/j.jcis.2014.10.034
-
[40]
Saidane, D.; Perrin, E.; Cherhal, F.; Guellec, F.; Capron, I. Some modification of cellulose nanocrystals for functional Pickering emulsions. Philos. Trans. R. Soc., A 2016, 374, 20150139. doi: 10.1098/rsta.2015.0139
-
[41]
Zoppe, J. O.; Venditti, R. A.; Rojas, O. J. Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. J. Colloid Interface Sci. 2012, 369, 202−209. doi: 10.1016/j.jcis.2011.12.011
-
[42]
Tang, J. T.; Lee, M. F. X.; Zhang, W.; Zhao, B. X.; Berry, R. M.; Tam, K. C. Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. Biomacromolecules 2014, 15, 3052−3060. doi: 10.1021/bm500663w
-
[43]
Gupta, A.; Eral, H. B.; Hatton, T. A.; Doyle, P. S. Nanoemulsions: formation, properties and applications. Soft Matter 2016, 12, 2826−2841. doi: 10.1039/C5SM02958A
-
[44]
Fryd, M. M.; Mason, T. G. Advanced nanoemulsions. Annu. Rev. Phys. Chem. 2012, 63, 493−518. doi: 10.1146/annurev-physchem-032210-103436
-
[45]
Arancibia, C.; Navarro-Lisboa, R.; Zúñiga, R. N.; Matiacevich, S. Application of CMC as thickener on nanoemulsions based on olive oil: physical properties and stability. Int. J. Polym. Sci. 2016, 2016, 1−10.
-
[46]
Singh, Y.; Meher, J. G.; Raval, K.; Khan, F. A.; Chaurasia, M.; Jain, N. K.; Chourasia, M. K. Nanoemulsion: concepts, development and applications in drug delivery. J. Control. Release 2017, 252, 28−49. doi: 10.1016/j.jconrel.2017.03.008
-
[47]
Sonneville-Aubrun, O.; Simonnet, J. T.; L'Alloret, F. Nanoemulsions: a new vehicle for skincare products. Adv. Colloid Interface Sci. 2004, 108-109, 145−149. doi: 10.1016/j.cis.2003.10.026
-
[48]
Bauer, K. N.; Tee, H. T.; Velencoso, M. M.; Wurm, F. R. Main-chain poly(phosphoester)s: history, syntheses, degradation, bio-and flame-retardant applications. Prog. Polym. Sci. 2017, 73, 61−122. doi: 10.1016/j.progpolymsci.2017.05.004
-
[49]
Wang, H. R.; He, J. L.; Zhang, M. Z.; Tam, K. C.; Ni, P. H. A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polym. Chem. 2015, 6, 4206−4209. doi: 10.1039/C5PY00466G
-
[50]
Zhang, S. Y.; Li, A.; Zou, J.; Lin, L. Y.; Wooley, K. L. Facile synthesis of clickable, water-soluble and degradable polyphosphoesters. ACS Macro Lett. 2012, 1, 328−333. doi: 10.1021/mz200226m
-
[51]
Habibi, Y.; Chanzy, H.; Vignon, M. R. TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 2006, 13, 679−687. doi: 10.1007/s10570-006-9075-y
-
[52]
Way, A. E.; Hsu, L.; Shanmuganathan, K.; Weder, C.; Rowan, S. J. pH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett. 2012, 1, 1001−1006. doi: 10.1021/mz3003006
-
[1]
计量
- PDF下载量: 0
- 文章访问数: 3650
- HTML全文浏览量: 118