Achieving Efficient Thick Film All-polymer Solar Cells Using a Green Solvent Additive

Zhen-Ye Li Wen-Kai Zhong Lei Ying Ning Li Feng Liu Fei Huang Yong Cao

Citation:  Zhen-Ye Li, Wen-Kai Zhong, Lei Ying, Ning Li, Feng Liu, Fei Huang, Yong Cao. Achieving Efficient Thick Film All-polymer Solar Cells Using a Green Solvent Additive[J]. Chinese Journal of Polymer Science, 2020, 38(4): 323-331. doi: 10.1007/s10118-020-2356-3 shu

Achieving Efficient Thick Film All-polymer Solar Cells Using a Green Solvent Additive


    1. [1]

      Ma, X.; Luo, M.; Gao, W.; Yuan, J.; An, Q.; Zhang, M.; Hu, Z.; Gao, J.; Wang, J.; Zou, Y.; Yang, C.; Zhang, F. Achieving 14.11% efficiency of ternary polymer solar cells by simultaneously optimizing photon harvesting and exciton distribution. J. Mater. Chem. A 2019, 7, 7843−7851. doi: 10.1039/C9TA01497G

    2. [2]

      Li, M.; Gao, K.; Wan, X.; Zhang, Q.; Kan, B.; Xia, R.; Liu, F.; Yang, X.; Feng, H.; Ni, W.; Wang, Y.; Peng, J.; Zhang, H.; Liang, Z.; Yip, H. L.; Peng, X.; Cao, Y.; Chen, Y. Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat. Photonics 2016, 11, 85−90.

    3. [3]

      Zhao, Y.; Zou, W.; Li, H.; Lu, K.; Yan, W.; Wei, Z. X. Large-area, flexible polymer solar cell based on silver nanowires as transparent electrode by roll-to-roll printing. Chinese J. Polym. Sci. 2017, 35, 261−268. doi: 10.1007/s10118-017-1875-z

    4. [4]

      Bin, H.; Gao, L.; Zhang, Z. G.; Yang, Y.; Zhang, Y.; Zhang, C.; Chen, S.; Xue, L.; Yang, C.; Xiao, M.; Li, Y. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 2016, 7, 13651. doi: 10.1038/ncomms13651

    5. [5]

      Li Z.; Zhong W.; Ying L.; Liu F.; Li N.; Huang F.; Cao Y. Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability. Nano Energy 2019, 64, 103931. doi: 10.1016/j.nanoen.2019.103931

    6. [6]

      Jin, Y.; Chen, Z.; Xiao, M.; Peng, J.; Fan, B.; Ying, L.; Zhang, G.; Jiang, X. F.; Yin, Q.; Liang, Z.; Huang, F.; Cao, Y. Thick film polymer solar cells based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole conjugated polymers with efficiency over 11%. Adv. Energy Mater. 2017, 6, 1700944.

    7. [7]

      Yao, H.; Bai, F.; Hu, H.; Arunagiri, L.; Zhang, J.; Chen, Y.; Yu, H.; Chen, S.; Liu, T.; Yuk, J.; Lai, L.; Zou, Y.; Ade, H.; Yan, H. Efficient all-polymer solar cells based on an new polymer acceptor achieving 10.3% power conversion efficiency. ACS Energy Lett. 2019, 4, 417−422. doi: 10.1021/acsenergylett.8b02114

    8. [8]

      Zhao, W.; Zhang, Y.; Zhang, S.; Li, S.; He, C.; Hou, J. Vacuum-assisted annealing method for high efficiency printable large-area polymer solar cell modules. J. Mater. Chem. C 2019, 7, 3206−3211.

    9. [9]

      Yang, J.; Yin, Y.; Chen, F.; Zhang, Y.; Xiao, B.; Zhao, L.; Zhou, E. Comparison of three n-type copolymers based on benzodithiophene and naphthalene diimide/perylene diimide/fused perylene diimides for all-polymer solar cells application. ACS Appl. Mater. Interfaces 2018, 10, 23263−23269. doi: 10.1021/acsami.8b06306

    10. [10]

      Guo, Y. K.; Li, Y. K.; Han, H.; Yan, H.; Zhao, D. All-polymer solar cells with perylenediimide polymer acceptors. Chinese J. Polym. Sci. 2017, 35, 293−301. doi: 10.1007/s10118-017-1893-x

    11. [11]

      Chen, H.; Guo, Y.; Chao, P.; Liu, L.; Chen, W.; Zhao, D.; He, F. A chlorinated polymer promoted analogue co-donors for efficient ternary all-polymer solar cells. Sci. China Chem. 2019, 62, 238−244. doi: 10.1007/s11426-018-9371-0

    12. [12]

      Yang, F.; Li, C.; Feng, G; Jiang, X.; Zhang, A.; Li, W. Bisperylene bisimide based conjugated polymer as electron acceptor for polymer-polymer solar cells. Chinese J. Polym. Sci. 2017, 35, 239−248. doi: 10.1007/s10118-017-1870-4

    13. [13]

      Liu, J.; Wang, L. X. Polymer electron acceptors containing boron-nitrogen coordination bond (B←N) for all-polymer solar cells. Acta Polymerica Sinica (in Chinese) 2017, 1856−1869. doi: 10.11777/j.issn1000-3304.2017.17205

    14. [14]

      Zhou, E.; Cong, J.; Wei, Q.; Tajima, K.; Yang, C.; Hashimoto K. All-polymer solar cells from perylene diimide based copolymers: material design and phase separation control. Angew. Chem. Int. Ed. 2011, 50, 2799−2803. doi: 10.1002/anie.201005408

    15. [15]

      Zhou, E.; Cong, J.; Hashimoto K.; Tajima, K. Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells. Adv. Mater. 2013, 25, 6991−6996. doi: 10.1002/adma.201303170

    16. [16]

      Yang, J.; Chen, F.; Xiao, B.; Sun, S.; Sun, X.; Tajima, K.; Tang, A.; Zhou, E. Modulating the symmetry of benzodithiophene by molecular tailoring for the application in naphthalene diimide-based n-type photovoltaic polymers. Solar RRL 2018, 2, 1700230. doi: 10.1002/solr.201700230

    17. [17]

      Gao, L.; Zhang, Z. G.; Xue, L.; Min, J.; Zhang, J.; Wei, Z.; Li, Y. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 2016, 28, 1884. doi: 10.1002/adma.201504629

    18. [18]

      Zhang, Z.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 2017, 129, 13688−13692. doi: 10.1002/ange.201707678

    19. [19]

      Liu, S.; Kan, Z.; Thomas, S.; Cruciani, F.; Brédas, J. L.; Beaujuge, P. M. Thieno[3,4-c]pyrrole-4,6-dione-3,4-difluorothiophene polymer acceptors for efficient all-polymer bulk heterojunction solar cells. Angew. Chem. Int. Ed. 2016, 55, 12996−13000. doi: 10.1002/anie.201604307

    20. [20]

      Dou, C.; Long, X.; Ding, Z.; Xie, Z.; Liu J.; Wang, L. An electron-deficient building block based on the B←N unit: an electron acceptor for all-polymer solar cells. Angew. Chem. Int. Ed. 2016, 55, 1436−1440. doi: 10.1002/anie.201508482

    21. [21]

      Guo, Y.; Li, Y.; Awartani, O.; Han, H.; Zhao, J.; Ade, H.; He, Y.; Zhao, D. Improved performance of all-polymer solar cells enabled by naphthodiperylenetetraimide-based polymer acceptor. Adv. Mater. 2017, 29, 1700309. doi: 10.1002/adma.201700309

    22. [22]

      Li, Z.; Fan, B.; He, B.; Ying, L.; Zhong, W.; Liu, F.; Huang, F.; Cao, Y. Side-chain modification of polyethylene glycol on conjugated polymers for ternary blend all-polymer solar cells with efficiency up to 9.27%. Sci. China Chem. 2018, 61, 427−436. doi: 10.1007/s11426-017-9188-7

    23. [23]

      Li, Z.; Ying, L.; Zhu, P.; Zhong, W.; Li, N.; Liu, F.; Huang, F.; Cao, Y. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy Environ. Sci. 2019, 12, 157−163. doi: 10.1039/C8EE02863J

    24. [24]

      Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B. J. From fullerene-polymer to all-polymer solar cells: the importance of molecular packing, orientation, and morphology control. Acc. Chem. Res. 2016, 49, 2424−2434. doi: 10.1021/acs.accounts.6b00347

    25. [25]

      Wang, S.; Liu, Y.; Yang, J.; Tao, Y.; Guo, Y.; Cao, X.; Zhang, Z.; Li, Y.; Huang, W. Orthogonal solubility in fully conjugated donor-acceptor block copolymers: compatibilizers for polymer/fullerene bulk-heterojunction solar cells. Chinese J. Polym. Sci. 2017, 35, 207−218. doi: 10.1007/s10118-017-1889-6

    26. [26]

      Liu, X.; Zou, Y.; Wang, H. Q.; Wang, L.; Fang J.; Yang, C. High-performance all-polymer solar cells with a high fill factor and a broad tolerance to the donor/acceptor ratio. ACS Appl. Mater. Interfaces 2018, 10, 38302−38309. doi: 10.1021/acsami.8b15028

    27. [27]

      Fan, B.; Zhong, W.; Ying, L.; Zhang, D.; Li, M.; Lin, Y.; Xia, R.; Liu, F.; Yip, H. L.; Li, N.; Ma, Y.; Brabec, C. J.; Huang, F.; Cao, Y. Surpassing the 10% efficiency milestone for 1-cm2 all-polymer solar cells. Nat. Commun. 2019, 10, 4100. doi: 10.1038/s41467-019-12132-6

    28. [28]

      Meng, L.; Yi, Y. Q. Q.; Wan, X.; Zhang, Y.; Ke, X.; Kan, B.; Wang, Y.; Xia, R.; Yip, H. L.; Li, C.; Chen, Y. A tandem organic solar cell with PCE of 14.52% employing subcells with the same polymer donor and two absorption complementary acceptors. Adv. Mater. 2019, 31, 1804723. doi: 10.1002/adma.201804723

    29. [29]

      Yin, A.; Zhang, D.; Cheung, S. H.; So, S. K.; Fu, Z.; Ying, L.; Huang, F.; Zhou, H.; Zhang, Y. On the understanding of energetic disorder, charge recombination and voltage losses in all-polymer solar cells. J. Mater. Chem. C 2018, 6, 7855−7863. doi: 10.1039/C8TC02689K

    30. [30]

      Chen, H. Electron-deficient core fused-ring based non-fullerene acceptor enables over 15% efficiency in single junction organic solar cells. Sci. China Chem. 2019, 62, 403−404.

    31. [31]

      Zhang, K.; Liu, X. Y.; Xu, B. W.; Cui, Y.; Sun, M. L.; Hou J. H. High-performance fullerene-free polymer solar cells with solution-processed conjugated polymers as anode interfacial layer. Chinese J. Polym. Sci. 2017, 35, 219−229. doi: 10.1007/s10118-017-1888-7

    32. [32]

      Zhao, R. Y.; Dou, C. D.; Liu, J.; Wang, L. X. An alternating polymer of two building blocks based on B←N unit: non-fullerene acceptor for organic photovoltaics. Chinese J. Polym. Sci. 2017, 35, 198−206. doi: 10.1007/s10118-017-1878-9

    33. [33]

      Yuan, J.; Ma, W. High efficiency all-polymer solar cells realized by the synergistic effect between the polymer side-chain structure and solvent additive. J. Mater. Chem. A 2015, 3, 7077−7085. doi: 10.1039/C4TA06648K

    34. [34]

      Li, W.; Albrecht, S.; Yang, L.; Roland, S.; Tumbleston, J. R.; McAfee, T.; Yan, L.; Kelly, M. A.; Ade, H.; Neher, D.; You, W. Mobility-controlled performance of thick solar cells based on fluorinated copolymers. J. Am. Chem. Soc. 2014, 136, 15566−15576. doi: 10.1021/ja5067724

    35. [35]

      Jin, Y.; Chen, Z.; Dong, S.; Zheng, N.; Ying, L.; Jiang, X. F.; Liu, F.; Huang, F.; Cao, Y. A novel naphtho[1,2-c:5,6-c′]bis([1,2,5] thiadiazole)-based narrow-bandgap π-conjugated polymer with power conversion efficiency over 10%. Adv. Mater. 2016, 28, 9811−9818. doi: 10.1002/adma.201603178

    36. [36]

      Li, W.; Hendriks, K. H.; Roelofs, W. S. C.; Kim, Y.; Wienk M. M.; Janssen, R. A. J. Efficient small bandgap polymer solar cells with high fill factors for 300 nm thick films. Adv. Mater. 2013, 25, 3182−3186. doi: 10.1002/adma.201300017

    37. [37]

      Yan, H.; Tang, Y.; Sui, X.; Liu, Y.; Gao, B.; Liu, X.; Liu, S. F.; Hou, J.; Ma, W. Increasing quantum efficiency of polymer solar cells with efficient exciton splitting and long carrier lifetime by molecular doping at heterojunctions. ACS Energy Lett. 2019, 4, 1356−1363. doi: 10.1021/acsenergylett.9b00843

    38. [38]

      Fan, B.; Zhu, P.; Xin, J.; Li, N.; Ying, L.; Zhong, W.; Li, Z.; Ma, W.; Huang, F.; Cao, Y. High-performance thick-film all-polymer solar cells created via ternary blending of a novel wide-bandgap electron-donating copolymer. Adv. Energy Mater. 2018, 8, 1703085. doi: 10.1002/aenm.201703085

    39. [39]

      Yuan, J.; Xu, Y.; Shi, G.; Ling, X.; Ying, L.; Huang, F.; Lee, T. H.; Woo, H. Y.; Kim, J. Y.; Cao, Y.; Ma, W. Engineering the morphology via processing additives in multiple all-polymer solar cells for improved performance. J. Mater. Chem. A 2018, 6, 10421−10432. doi: 10.1039/C8TA03343A

    40. [40]

      Zheng, Y.; Goh, T.; Fan, P.; Shi, W.; Yu, J.; Taylor, A. D. Toward efficient thick active PTB7 photovoltaic layers using diphenyl ether as a solvent additive. ACS Appl. Mater. Interfaces 2016, 8, 15724−15731. doi: 10.1021/acsami.6b03453

    41. [41]

      Xua, X.; Lia, Z.; Wang, J.; Lin, B.; Ma, W.; Xia, Y.; Anderssone, M. R.; Janssen, E.; Wang, R. A. J. High-performance all-polymer solar cells based on fluorinated naphthalene diimide acceptor polymers with fine-tuned crystallinity and enhanced dielectric constants. Nano Energy 2018, 45, 368−379.

    42. [42]

      Zhan, L.; Li, S.; Zhang, S.; Chen, X.; Lau, T. K.; Lu, X.; Shi, M.; Li, C. Z.; Chen, H. Enhanced charge transfer between fullerene and non-fullerene acceptors enables highly efficient ternary organic solar cells. ACS Appl. Mater. Interfaces 2018, 10, 42444−42452. doi: 10.1021/acsami.8b16131

    43. [43]

      Wang, Y.; Yan, Z.; Guo, H.; Uddin, M. A.; Ling, S.; Zhou, X.; Su, H.; Dai, J.; Woo, H. Y.; Guo, X. Effects of bithiophene imide fusion on the device performance of organic thin-film transistors and all-polymer solar cells. Angew. Chem. Int. Ed. 2017, 56, 15304−15308. doi: 10.1002/anie.201708421

    44. [44]

      Meng, Y.; Wu, J.; Guo, X.; Su, W.; Zhu, L.; Fang, J.; Zhang, Z. G.; Liu, F.; Zhang, M.; Russell, T. P.; Li, Y. 11.2% Efficiency all-polymer solar cells with high open-circuit voltage. Sci. China Chem. 2019, 62, 845−850. doi: 10.1007/s11426-019-9466-6

    45. [45]

      Dai, S. X.; Zhang, S. M.; Ling, Q. D.; Zhan, X. W. Rylene diimide and dithienocyano-vinylene copolymers for polymer solar cells. Chinese J. Polym. Sci. 2017, 35, 230−238. doi: 10.1007/s10118-017-1879-8

    46. [46]

      Wang, M. H.; Xue, Z. Y.; Wang, Z. W.; Ning, W. H.; Zhong, Y.; Liu, Y. N.; Zhang, C. F.; Huettner, S.; Tao, Y. T. Slight structural disorder in bithiophene-based random terpolymers with improved power conversion efficiency for polymer solar cells. Chinese J. Polym. Sci. 2018, 36, 1129−1138. doi: 10.1007/s10118-018-2128-5

    47. [47]

      Fan, B.; Ying, L.; Zhu, P.; Pan, F.; Liu, F.; Chen, J.; Huang, F.; Cao, Y. All-polymer solar cells based on a conjugated polymer containing siloxane-functionalized side chains with efficiency over 10%. Adv. Mater. 2017, 29, 1703906. doi: 10.1002/adma.201703906

    48. [48]

      Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457, 679. doi: 10.1038/nature07727

    49. [49]

      Wu, Z.; Sun, C.; Dong, S.; Jiang, X. F.; Wu, S.; Wu, H.; Yip, H. L.; Huang, F.; Cao, Y. n-Type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells. J. Am. Chem. Soc. 2016, 138, 2004−2013. doi: 10.1021/jacs.5b12664

    50. [50]

      Li, Z.; Xie, R.; Zhong, W.; Fan, B.; Ali, J.; Ying, L.; Liu, F.; Li, N.; Huang, F.; Cao, Y. High-performance green solvent processed ternary blended all-polymer solar cells enabled by complementary absorption and improved morphology. Sol. RRL 2018, 2, 1800196. doi: 10.1002/solr.201800196

    51. [51]

      Zhang, L.; Ma, W. Morphology optimization in ternary organic solar cells. Chinese J. Polym. Sci. 2017, 35, 184−197. doi: 10.1007/s10118-017-1898-5

    52. [52]

      Li, Z.; Ying, L.; Xie, R.; Zhu, P.; Li, N.; Zhong, W.; Huang, F.; Cao, Y. Designing ternary blend all-polymer solar cells with an efficiency of over 10% and a fill factor of 78%. Nano Energy 2018, 51, 434−441. doi: 10.1016/j.nanoen.2018.06.081

    53. [53]

      Feng, K.; Yuan, J.; Bi, Z.; Ma, W.; Xu, X.; Zhang, G.; Peng, Q. Low-energy-loss polymer solar cells with 14.52% efficiency enabled by wide-band-gap copolymers. iScience 2019, 12, 1−12. doi: 10.1016/j.isci.2018.12.027

    54. [54]

      Zheng, Z.; Wang, R.; Yao, H.; Xie, S.; Zhang, Y.; Hou, J.; Zhou, H.; Tang, Z. Polyamino acid interlayer facilitates electron extraction in narrow band gap fullerene-free organic solar cells with an outstanding short-circuit current. Nano Energy 2018, 50, 169−175. doi: 10.1016/j.nanoen.2018.05.034

    55. [55]

      Islam, A.; Liu, Z. Y.; Peng, R. X.; Jiang, W. G.; Lei, T.; Li, W.; Zhang, L.; Yang, R. J.; Qian, G.; Ge, Z. Y. Furan-containing conjugated polymers for organic solar cells. Chinese J. Polym. Sci. 2017, 35, 171−183. doi: 10.1007/s10118-017-1886-9

    56. [56]

      Keshtov, M. L.; Marochkin, D. V.; Fu, Y. Y.; Xie, Z. Y.; Geng, Y. H.; Kochurov V. S.; Khokhlov A. R. Thienopyrazine or dithiadiazatrindene containing low band gap conjugated polymers for polymer solar cells. Chinese J. Polym. Sci. 2014, 32, 844−853. doi: 10.1007/s10118-014-1458-1

  • 加载中
  • PDF下载量:  0
  • 文章访问数:  1156
  • HTML全文浏览量:  22
  • 发布日期:  2020-04-01
  • 收稿日期:  2019-08-01
  • 修回日期:  2019-09-05
  • 网络出版日期:  2019-11-27
通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索