Citation: Zhen-Ye Li, Wen-Kai Zhong, Lei Ying, Ning Li, Feng Liu, Fei Huang, Yong Cao. Achieving Efficient Thick Film All-polymer Solar Cells Using a Green Solvent Additive[J]. Chinese Journal of Polymer Science, ;2020, 38(4): 323-331. doi: 10.1007/s10118-020-2356-3 shu

Achieving Efficient Thick Film All-polymer Solar Cells Using a Green Solvent Additive

  • Corresponding author: Lei Ying, msleiying@scut.edu.cn Fei Huang, msfhuang@scut.edu.cn
  • Received Date: 1 August 2019
    Revised Date: 5 September 2019
    Accepted Date: 5 September 2019
    Available Online: 1 April 2020

  • Advances in organic photovoltaic technologies have been geared toward industrial high-throughput printing manufacturing, which requires insensitivity of photovoltaic performance regarding to the light-harvesting layer thickness. However, the thickness of light-harvesting layer for all polymer solar cells (all-PSCs) is often limited to about 100 nm due to the dramatically decreased fill factor upon increasing film thickness, which hampers the light harvesting capability to increase the power conversion efficiency, and is unfavorable for fabricating large-area devices. Here we demonstrate that by tuning the bulk heterojunction morphology using a non-halogenated solvent, cyclopentyl methyl ether, in the presence of a green solvent additive of dibenzyl ether, the power conversion efficiency of all-PSCs with photoactive layer thicknesses of over 500 nm reached an impressively high value of 9%. The generic applicability of this green solvent additive to boost the power conversion efficiency of thick-film devices is also validated in various bulk heterojunction active layer systems, thus representing a promising approach for the fabrication of all-PSCs toward industrial production, as well as further commercialization.
  • 加载中
    1. [1]

      Ma, X.; Luo, M.; Gao, W.; Yuan, J.; An, Q.; Zhang, M.; Hu, Z.; Gao, J.; Wang, J.; Zou, Y.; Yang, C.; Zhang, F. Achieving 14.11% efficiency of ternary polymer solar cells by simultaneously optimizing photon harvesting and exciton distribution. J. Mater. Chem. A 2019, 7, 7843−7851.  doi: 10.1039/C9TA01497G

    2. [2]

      Li, M.; Gao, K.; Wan, X.; Zhang, Q.; Kan, B.; Xia, R.; Liu, F.; Yang, X.; Feng, H.; Ni, W.; Wang, Y.; Peng, J.; Zhang, H.; Liang, Z.; Yip, H. L.; Peng, X.; Cao, Y.; Chen, Y. Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat. Photonics 2016, 11, 85−90.

    3. [3]

      Zhao, Y.; Zou, W.; Li, H.; Lu, K.; Yan, W.; Wei, Z. X. Large-area, flexible polymer solar cell based on silver nanowires as transparent electrode by roll-to-roll printing. Chinese J. Polym. Sci. 2017, 35, 261−268.  doi: 10.1007/s10118-017-1875-z

    4. [4]

      Bin, H.; Gao, L.; Zhang, Z. G.; Yang, Y.; Zhang, Y.; Zhang, C.; Chen, S.; Xue, L.; Yang, C.; Xiao, M.; Li, Y. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 2016, 7, 13651.  doi: 10.1038/ncomms13651

    5. [5]

      Li Z.; Zhong W.; Ying L.; Liu F.; Li N.; Huang F.; Cao Y. Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability. Nano Energy 2019, 64, 103931.  doi: 10.1016/j.nanoen.2019.103931

    6. [6]

      Jin, Y.; Chen, Z.; Xiao, M.; Peng, J.; Fan, B.; Ying, L.; Zhang, G.; Jiang, X. F.; Yin, Q.; Liang, Z.; Huang, F.; Cao, Y. Thick film polymer solar cells based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole conjugated polymers with efficiency over 11%. Adv. Energy Mater. 2017, 6, 1700944.

    7. [7]

      Yao, H.; Bai, F.; Hu, H.; Arunagiri, L.; Zhang, J.; Chen, Y.; Yu, H.; Chen, S.; Liu, T.; Yuk, J.; Lai, L.; Zou, Y.; Ade, H.; Yan, H. Efficient all-polymer solar cells based on an new polymer acceptor achieving 10.3% power conversion efficiency. ACS Energy Lett. 2019, 4, 417−422.  doi: 10.1021/acsenergylett.8b02114

    8. [8]

      Zhao, W.; Zhang, Y.; Zhang, S.; Li, S.; He, C.; Hou, J. Vacuum-assisted annealing method for high efficiency printable large-area polymer solar cell modules. J. Mater. Chem. C 2019, 7, 3206−3211.

    9. [9]

      Yang, J.; Yin, Y.; Chen, F.; Zhang, Y.; Xiao, B.; Zhao, L.; Zhou, E. Comparison of three n-type copolymers based on benzodithiophene and naphthalene diimide/perylene diimide/fused perylene diimides for all-polymer solar cells application. ACS Appl. Mater. Interfaces 2018, 10, 23263−23269.  doi: 10.1021/acsami.8b06306

    10. [10]

      Guo, Y. K.; Li, Y. K.; Han, H.; Yan, H.; Zhao, D. All-polymer solar cells with perylenediimide polymer acceptors. Chinese J. Polym. Sci. 2017, 35, 293−301.  doi: 10.1007/s10118-017-1893-x

    11. [11]

      Chen, H.; Guo, Y.; Chao, P.; Liu, L.; Chen, W.; Zhao, D.; He, F. A chlorinated polymer promoted analogue co-donors for efficient ternary all-polymer solar cells. Sci. China Chem. 2019, 62, 238−244.  doi: 10.1007/s11426-018-9371-0

    12. [12]

      Yang, F.; Li, C.; Feng, G; Jiang, X.; Zhang, A.; Li, W. Bisperylene bisimide based conjugated polymer as electron acceptor for polymer-polymer solar cells. Chinese J. Polym. Sci. 2017, 35, 239−248.  doi: 10.1007/s10118-017-1870-4

    13. [13]

      Liu, J.; Wang, L. X. Polymer electron acceptors containing boron-nitrogen coordination bond (B←N) for all-polymer solar cells. Acta Polymerica Sinica (in Chinese) 2017, 1856−1869.  doi: 10.11777/j.issn1000-3304.2017.17205

    14. [14]

      Zhou, E.; Cong, J.; Wei, Q.; Tajima, K.; Yang, C.; Hashimoto K. All-polymer solar cells from perylene diimide based copolymers: material design and phase separation control. Angew. Chem. Int. Ed. 2011, 50, 2799−2803.  doi: 10.1002/anie.201005408

    15. [15]

      Zhou, E.; Cong, J.; Hashimoto K.; Tajima, K. Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells. Adv. Mater. 2013, 25, 6991−6996.  doi: 10.1002/adma.201303170

    16. [16]

      Yang, J.; Chen, F.; Xiao, B.; Sun, S.; Sun, X.; Tajima, K.; Tang, A.; Zhou, E. Modulating the symmetry of benzodithiophene by molecular tailoring for the application in naphthalene diimide-based n-type photovoltaic polymers. Solar RRL 2018, 2, 1700230.  doi: 10.1002/solr.201700230

    17. [17]

      Gao, L.; Zhang, Z. G.; Xue, L.; Min, J.; Zhang, J.; Wei, Z.; Li, Y. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 2016, 28, 1884.  doi: 10.1002/adma.201504629

    18. [18]

      Zhang, Z.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 2017, 129, 13688−13692.  doi: 10.1002/ange.201707678

    19. [19]

      Liu, S.; Kan, Z.; Thomas, S.; Cruciani, F.; Brédas, J. L.; Beaujuge, P. M. Thieno[3,4-c]pyrrole-4,6-dione-3,4-difluorothiophene polymer acceptors for efficient all-polymer bulk heterojunction solar cells. Angew. Chem. Int. Ed. 2016, 55, 12996−13000.  doi: 10.1002/anie.201604307

    20. [20]

      Dou, C.; Long, X.; Ding, Z.; Xie, Z.; Liu J.; Wang, L. An electron-deficient building block based on the B←N unit: an electron acceptor for all-polymer solar cells. Angew. Chem. Int. Ed. 2016, 55, 1436−1440.  doi: 10.1002/anie.201508482

    21. [21]

      Guo, Y.; Li, Y.; Awartani, O.; Han, H.; Zhao, J.; Ade, H.; He, Y.; Zhao, D. Improved performance of all-polymer solar cells enabled by naphthodiperylenetetraimide-based polymer acceptor. Adv. Mater. 2017, 29, 1700309.  doi: 10.1002/adma.201700309

    22. [22]

      Li, Z.; Fan, B.; He, B.; Ying, L.; Zhong, W.; Liu, F.; Huang, F.; Cao, Y. Side-chain modification of polyethylene glycol on conjugated polymers for ternary blend all-polymer solar cells with efficiency up to 9.27%. Sci. China Chem. 2018, 61, 427−436.  doi: 10.1007/s11426-017-9188-7

    23. [23]

      Li, Z.; Ying, L.; Zhu, P.; Zhong, W.; Li, N.; Liu, F.; Huang, F.; Cao, Y. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy Environ. Sci. 2019, 12, 157−163.  doi: 10.1039/C8EE02863J

    24. [24]

      Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B. J. From fullerene-polymer to all-polymer solar cells: the importance of molecular packing, orientation, and morphology control. Acc. Chem. Res. 2016, 49, 2424−2434.  doi: 10.1021/acs.accounts.6b00347

    25. [25]

      Wang, S.; Liu, Y.; Yang, J.; Tao, Y.; Guo, Y.; Cao, X.; Zhang, Z.; Li, Y.; Huang, W. Orthogonal solubility in fully conjugated donor-acceptor block copolymers: compatibilizers for polymer/fullerene bulk-heterojunction solar cells. Chinese J. Polym. Sci. 2017, 35, 207−218.  doi: 10.1007/s10118-017-1889-6

    26. [26]

      Liu, X.; Zou, Y.; Wang, H. Q.; Wang, L.; Fang J.; Yang, C. High-performance all-polymer solar cells with a high fill factor and a broad tolerance to the donor/acceptor ratio. ACS Appl. Mater. Interfaces 2018, 10, 38302−38309.  doi: 10.1021/acsami.8b15028

    27. [27]

      Fan, B.; Zhong, W.; Ying, L.; Zhang, D.; Li, M.; Lin, Y.; Xia, R.; Liu, F.; Yip, H. L.; Li, N.; Ma, Y.; Brabec, C. J.; Huang, F.; Cao, Y. Surpassing the 10% efficiency milestone for 1-cm2 all-polymer solar cells. Nat. Commun. 2019, 10, 4100.  doi: 10.1038/s41467-019-12132-6

    28. [28]

      Meng, L.; Yi, Y. Q. Q.; Wan, X.; Zhang, Y.; Ke, X.; Kan, B.; Wang, Y.; Xia, R.; Yip, H. L.; Li, C.; Chen, Y. A tandem organic solar cell with PCE of 14.52% employing subcells with the same polymer donor and two absorption complementary acceptors. Adv. Mater. 2019, 31, 1804723.  doi: 10.1002/adma.201804723

    29. [29]

      Yin, A.; Zhang, D.; Cheung, S. H.; So, S. K.; Fu, Z.; Ying, L.; Huang, F.; Zhou, H.; Zhang, Y. On the understanding of energetic disorder, charge recombination and voltage losses in all-polymer solar cells. J. Mater. Chem. C 2018, 6, 7855−7863.  doi: 10.1039/C8TC02689K

    30. [30]

      Chen, H. Electron-deficient core fused-ring based non-fullerene acceptor enables over 15% efficiency in single junction organic solar cells. Sci. China Chem. 2019, 62, 403−404.

    31. [31]

      Zhang, K.; Liu, X. Y.; Xu, B. W.; Cui, Y.; Sun, M. L.; Hou J. H. High-performance fullerene-free polymer solar cells with solution-processed conjugated polymers as anode interfacial layer. Chinese J. Polym. Sci. 2017, 35, 219−229.  doi: 10.1007/s10118-017-1888-7

    32. [32]

      Zhao, R. Y.; Dou, C. D.; Liu, J.; Wang, L. X. An alternating polymer of two building blocks based on B←N unit: non-fullerene acceptor for organic photovoltaics. Chinese J. Polym. Sci. 2017, 35, 198−206.  doi: 10.1007/s10118-017-1878-9

    33. [33]

      Yuan, J.; Ma, W. High efficiency all-polymer solar cells realized by the synergistic effect between the polymer side-chain structure and solvent additive. J. Mater. Chem. A 2015, 3, 7077−7085.  doi: 10.1039/C4TA06648K

    34. [34]

      Li, W.; Albrecht, S.; Yang, L.; Roland, S.; Tumbleston, J. R.; McAfee, T.; Yan, L.; Kelly, M. A.; Ade, H.; Neher, D.; You, W. Mobility-controlled performance of thick solar cells based on fluorinated copolymers. J. Am. Chem. Soc. 2014, 136, 15566−15576.  doi: 10.1021/ja5067724

    35. [35]

      Jin, Y.; Chen, Z.; Dong, S.; Zheng, N.; Ying, L.; Jiang, X. F.; Liu, F.; Huang, F.; Cao, Y. A novel naphtho[1,2-c:5,6-c′]bis([1,2,5] thiadiazole)-based narrow-bandgap π-conjugated polymer with power conversion efficiency over 10%. Adv. Mater. 2016, 28, 9811−9818.  doi: 10.1002/adma.201603178

    36. [36]

      Li, W.; Hendriks, K. H.; Roelofs, W. S. C.; Kim, Y.; Wienk M. M.; Janssen, R. A. J. Efficient small bandgap polymer solar cells with high fill factors for 300 nm thick films. Adv. Mater. 2013, 25, 3182−3186.  doi: 10.1002/adma.201300017

    37. [37]

      Yan, H.; Tang, Y.; Sui, X.; Liu, Y.; Gao, B.; Liu, X.; Liu, S. F.; Hou, J.; Ma, W. Increasing quantum efficiency of polymer solar cells with efficient exciton splitting and long carrier lifetime by molecular doping at heterojunctions. ACS Energy Lett. 2019, 4, 1356−1363.  doi: 10.1021/acsenergylett.9b00843

    38. [38]

      Fan, B.; Zhu, P.; Xin, J.; Li, N.; Ying, L.; Zhong, W.; Li, Z.; Ma, W.; Huang, F.; Cao, Y. High-performance thick-film all-polymer solar cells created via ternary blending of a novel wide-bandgap electron-donating copolymer. Adv. Energy Mater. 2018, 8, 1703085.  doi: 10.1002/aenm.201703085

    39. [39]

      Yuan, J.; Xu, Y.; Shi, G.; Ling, X.; Ying, L.; Huang, F.; Lee, T. H.; Woo, H. Y.; Kim, J. Y.; Cao, Y.; Ma, W. Engineering the morphology via processing additives in multiple all-polymer solar cells for improved performance. J. Mater. Chem. A 2018, 6, 10421−10432.  doi: 10.1039/C8TA03343A

    40. [40]

      Zheng, Y.; Goh, T.; Fan, P.; Shi, W.; Yu, J.; Taylor, A. D. Toward efficient thick active PTB7 photovoltaic layers using diphenyl ether as a solvent additive. ACS Appl. Mater. Interfaces 2016, 8, 15724−15731.  doi: 10.1021/acsami.6b03453

    41. [41]

      Xua, X.; Lia, Z.; Wang, J.; Lin, B.; Ma, W.; Xia, Y.; Anderssone, M. R.; Janssen, E.; Wang, R. A. J. High-performance all-polymer solar cells based on fluorinated naphthalene diimide acceptor polymers with fine-tuned crystallinity and enhanced dielectric constants. Nano Energy 2018, 45, 368−379.

    42. [42]

      Zhan, L.; Li, S.; Zhang, S.; Chen, X.; Lau, T. K.; Lu, X.; Shi, M.; Li, C. Z.; Chen, H. Enhanced charge transfer between fullerene and non-fullerene acceptors enables highly efficient ternary organic solar cells. ACS Appl. Mater. Interfaces 2018, 10, 42444−42452.  doi: 10.1021/acsami.8b16131

    43. [43]

      Wang, Y.; Yan, Z.; Guo, H.; Uddin, M. A.; Ling, S.; Zhou, X.; Su, H.; Dai, J.; Woo, H. Y.; Guo, X. Effects of bithiophene imide fusion on the device performance of organic thin-film transistors and all-polymer solar cells. Angew. Chem. Int. Ed. 2017, 56, 15304−15308.  doi: 10.1002/anie.201708421

    44. [44]

      Meng, Y.; Wu, J.; Guo, X.; Su, W.; Zhu, L.; Fang, J.; Zhang, Z. G.; Liu, F.; Zhang, M.; Russell, T. P.; Li, Y. 11.2% Efficiency all-polymer solar cells with high open-circuit voltage. Sci. China Chem. 2019, 62, 845−850.  doi: 10.1007/s11426-019-9466-6

    45. [45]

      Dai, S. X.; Zhang, S. M.; Ling, Q. D.; Zhan, X. W. Rylene diimide and dithienocyano-vinylene copolymers for polymer solar cells. Chinese J. Polym. Sci. 2017, 35, 230−238.  doi: 10.1007/s10118-017-1879-8

    46. [46]

      Wang, M. H.; Xue, Z. Y.; Wang, Z. W.; Ning, W. H.; Zhong, Y.; Liu, Y. N.; Zhang, C. F.; Huettner, S.; Tao, Y. T. Slight structural disorder in bithiophene-based random terpolymers with improved power conversion efficiency for polymer solar cells. Chinese J. Polym. Sci. 2018, 36, 1129−1138.  doi: 10.1007/s10118-018-2128-5

    47. [47]

      Fan, B.; Ying, L.; Zhu, P.; Pan, F.; Liu, F.; Chen, J.; Huang, F.; Cao, Y. All-polymer solar cells based on a conjugated polymer containing siloxane-functionalized side chains with efficiency over 10%. Adv. Mater. 2017, 29, 1703906.  doi: 10.1002/adma.201703906

    48. [48]

      Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457, 679.  doi: 10.1038/nature07727

    49. [49]

      Wu, Z.; Sun, C.; Dong, S.; Jiang, X. F.; Wu, S.; Wu, H.; Yip, H. L.; Huang, F.; Cao, Y. n-Type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells. J. Am. Chem. Soc. 2016, 138, 2004−2013.  doi: 10.1021/jacs.5b12664

    50. [50]

      Li, Z.; Xie, R.; Zhong, W.; Fan, B.; Ali, J.; Ying, L.; Liu, F.; Li, N.; Huang, F.; Cao, Y. High-performance green solvent processed ternary blended all-polymer solar cells enabled by complementary absorption and improved morphology. Sol. RRL 2018, 2, 1800196.  doi: 10.1002/solr.201800196

    51. [51]

      Zhang, L.; Ma, W. Morphology optimization in ternary organic solar cells. Chinese J. Polym. Sci. 2017, 35, 184−197.  doi: 10.1007/s10118-017-1898-5

    52. [52]

      Li, Z.; Ying, L.; Xie, R.; Zhu, P.; Li, N.; Zhong, W.; Huang, F.; Cao, Y. Designing ternary blend all-polymer solar cells with an efficiency of over 10% and a fill factor of 78%. Nano Energy 2018, 51, 434−441.  doi: 10.1016/j.nanoen.2018.06.081

    53. [53]

      Feng, K.; Yuan, J.; Bi, Z.; Ma, W.; Xu, X.; Zhang, G.; Peng, Q. Low-energy-loss polymer solar cells with 14.52% efficiency enabled by wide-band-gap copolymers. iScience 2019, 12, 1−12.  doi: 10.1016/j.isci.2018.12.027

    54. [54]

      Zheng, Z.; Wang, R.; Yao, H.; Xie, S.; Zhang, Y.; Hou, J.; Zhou, H.; Tang, Z. Polyamino acid interlayer facilitates electron extraction in narrow band gap fullerene-free organic solar cells with an outstanding short-circuit current. Nano Energy 2018, 50, 169−175.  doi: 10.1016/j.nanoen.2018.05.034

    55. [55]

      Islam, A.; Liu, Z. Y.; Peng, R. X.; Jiang, W. G.; Lei, T.; Li, W.; Zhang, L.; Yang, R. J.; Qian, G.; Ge, Z. Y. Furan-containing conjugated polymers for organic solar cells. Chinese J. Polym. Sci. 2017, 35, 171−183.  doi: 10.1007/s10118-017-1886-9

    56. [56]

      Keshtov, M. L.; Marochkin, D. V.; Fu, Y. Y.; Xie, Z. Y.; Geng, Y. H.; Kochurov V. S.; Khokhlov A. R. Thienopyrazine or dithiadiazatrindene containing low band gap conjugated polymers for polymer solar cells. Chinese J. Polym. Sci. 2014, 32, 844−853.  doi: 10.1007/s10118-014-1458-1

  • 加载中
    1. [1]

      Long XiaojingDou ChuandongLiu JunWang Lixiang . A homopolymer based on double B ←N bridged bipyridine as electron acceptor for all-polymer solar cells. Chinese Chemical Letters, 2018, 29(9): 1343-1346. doi: 10.1016/j.cclet.2018.01.052

    2. [2]

      Liu XupoZhang YunfengDeng ShaofengLi CuicuiDong JiamingWang JiayingYang ZehuiWang DeliCheng Hansong . Semi-interpenetrating polymer networks toward sulfonated poly(ether ether ketone) membranes for high concentration direct methanol fuel cell. Chinese Chemical Letters, 2019, 30(2): 299-304. doi: 10.1016/j.cclet.2018.09.021

    3. [3]

      Zhao Bin QIU Zhi Shen MO Hong Fang ZHANG . Synthesis of a New Aryl Ether Ketone Polymer. Chinese Chemical Letters, 1998, 9(10): 893-894.

    4. [4]

      Xu Shi-ChaoZhu Shou-JiBi Liang-WuChen Yu-XiangWang JingLu Yan-JuGu YanZhao Zhen-Dong . Solvent and additive-free selective aerobic allylic hydroxylation of β-pinene catalyzed by metalloporphyrins. Chinese Chemical Letters, 2017, 28(3): 575-578. doi: 10.1016/j.cclet.2016.11.020

    5. [5]

      GUO XiaFAN QunpingCUI ChaohuaZHANG ZhiguoZHANG Maojie . Wide Bandgap Random Terpolymers for High Efficiency Halogen-Free Solvent Processed Polymer Solar Cells. Acta Physico-Chimica Sinica, 2018, 34(11): 1279-1285. doi: 10.3866/PKU.WHXB201804098

    6. [6]

      GUO Ying-ChenCHEN Shu-YangSUN Ru-ZhongFENG Yu-Quan . Synthesis, Crystal Structure and Antibacterial Activity of Dibenzyl Dithiocarbamate Bismuth Complex. Chinese Journal of Structural Chemistry, 2014, 33(12): 1768-1772. doi: 10.14102/j.cnki.0254-5861.2011-0342

    7. [7]

      Xi You LI Guo Xiang XIONG Hui Jun XU . The Synthesis and Film Forming Properties of Unsymmetrical Phthalocyanine Bearing One Crown Ether Void. Chinese Chemical Letters, 1997, 8(9): 815-818.

    8. [8]

      Li Qiang Su Shi Qiao Wei Bing Zhang . Studies on the synthesis and properties of malachite green imprinted polymer. Chinese Chemical Letters, 2007, 18(2): 229-232. doi: 10.1016/j.cclet.2006.12.013

    9. [9]

      Bo ZHOU Jian Zhang LI Chun Hong HE Sheng Ying QIN . EDTA-type Polymer Based on Diazacrown Ether as the Solubilizer of Barium Sulfate to Water. Chinese Chemical Letters, 2005, 16(1): 27-30.

    10. [10]

      Hamid Reza ShaterianMorteza Aghakhanizadeh . Ionic-liquid-catalyzed green synthesis of coumarin derivatives under solvent-free conditions. Chinese Journal of Catalysis, 2013, 34(9): 1690-1696. doi: 10.1016/S1872-2067(12)60654-8

    11. [11]

      Xin Ying Zhang Ying Ying Qu Xue Sen Fan . An efficient and green preparation of 5-aminophosphonate substituted pyrimidine nucleosides under solvent-free conditions. Chinese Chemical Letters, 2010, 21(10): 1191-1194. doi: 10.1016/j.cclet.2010.04.037

    12. [12]

      Wu MeimeiShi LaitaoHu YuChen LieHu TingZhang YoudiYuan ZhongyiChen Yiwang . Additive-free non-fullerene organic solar cells with random copolymers as donors over 9% power conversion efficiency. Chinese Chemical Letters, 2019, 30(6): 1161-1167. doi: 10.1016/j.cclet.2019.04.029

    13. [13]

      Abolghasem DavoodniaRahil MahjoobinNiloofar Tavakoli-Hoseini . A facile, green, one-pot synthesis of amidoalkyl naphthols under solvent-free conditions catalyzed by a carbon-based solid acid. Chinese Journal of Catalysis, 2014, 35(4): 490-495. doi: 10.1016/S1872-2067(14)60011-5

    14. [14]

      Simin NazariMosadegh KeshavarzBahador KaramiNasir IravaniMasoumeh Vafaee-Nezhad . Imidazol-1-yl-acetic acid as a novel green bifunctional organocatalyst for the synthesis of 1, 8-dioxooctahydroxanthenes under solvent-free conditions. Chinese Chemical Letters, 2014, 25(2): 317-320.

    15. [15]

      Amin Rostami Firoz Ahmad-Jangi . Sulfamic acid:An efficient, cost-effective and green catalyst for crossed-aldol condensation of ketones with aromatic aldehydes under solvent-free. Chinese Chemical Letters, 2011, 22(9): 1029-1032. doi: 10.1016/j.cclet.2011.03.015

    16. [16]

      Heshmatollah Alinezhad Asefeh Hagh Haghighi Fatemeh Salehian . A green method for the synthesis of bis-indolylmethanes and 3,3'-indolyloxindole derivatives using cellulose sulfuric acid under solvent-free conditions. Chinese Chemical Letters, 2010, 21(2): 183-186. doi: 10.1016/j.cclet.2009.09.001

    17. [17]

      Konkala Veera SwamyDubey Pramod Kumar . Sulfamic acid as a green, reusable catalyst for stepwise, tandem & one-pot solvent-free synthesis of pyrazole derivatives. Chinese Chemical Letters, 2017, 28(7): 1571-1576. doi: 10.1016/j.cclet.2017.02.005

    18. [18]

      XIONG Xin-XingLI DiZHOU Jun-LiXU Bao-MingHUANG QinWANG Long-Sheng . Syntheses, Characterizations and Crystal Structures of (E)-2-Methyl-1,3-diphenylisothiouronium Iodide and 1,3-Dibenzyl-2-methylisothiouronium Iodide. Chinese Journal of Structural Chemistry, 2015, 34(5): 695-702. doi: 10.14102/j.cnki.0254-5861.2011-0577

    19. [19]

      Javad Safaei-GhomiHossein Shahbazi-AlaviAbolfazl ZiaratiRaheleh TeymuriMohammad Reza Saberi . A highly flexible green synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives with CuI nanoparticles as catalyst under solvent-free conditions. Chinese Chemical Letters, 2014, 25(3): 401-405. doi: 10.1016/j.cclet.2013.11.046

Metrics
  • PDF Downloads(0)
  • Abstract views(835)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return