Citation: Antoine Forens, Kevin Roos, Charlotte Dire, Benoit Gadenne, Stéphane Carlotti. Anionic Polymerization of Butadiene Using Lithium/Potassium Multi-metallic Systems: Influence on Polymerization Control and Polybutadiene Microstructure[J]. Chinese Journal of Polymer Science, ;2020, 38(4): 357-362. doi: 10.1007/s10118-020-2355-4 shu

Anionic Polymerization of Butadiene Using Lithium/Potassium Multi-metallic Systems: Influence on Polymerization Control and Polybutadiene Microstructure

  • Corresponding author: Stéphane Carlotti, carlotti@enscbp.fr
  • Received Date: 15 July 2019
    Revised Date: 2 September 2019
    Available Online: 18 November 2019

  • Thermal, mechanical, and viscoelastic properties of polybutadiene-based rubber materials are highly dependent on polybutadiene microstructure. The use of polar modifier in association with alkyllithium is a well-known method to obtain polybutadiene with a high vinyl content. Another approach is to use bimetallic initiating species such as alkyllithium combined to heavier alkali metal alkoxide (RONa, ROK…). The polymerization control is nevertheless not achieved and several parameters were found to influence it. Using bimetallic initiating systems based on alkyllithium and a potassium alkoxide, alkyllithium structure, initiator preformation time, and initiator composition were identified as parameters influencing the anionic polymerization process of butadiene and/or polybutadiene microstructure. In addition, the use of trimetallic systems based on alkyllithium, potassium alkoxide, and alkylaluminum was investigated in order to prevent side reactions regardless of the [K]/[Li] ratio and of the initiator preformation time.
  • 加载中
    1. [1]

      Aggarwal, S. L.; Hargis, I. G.; Livigni, R. A.; Fabris, H. J.; Marker, L. F, in Advances in elastomers and rubber elasticity, ed. by Lal, J.; Mark, J. E. Springer US, Boston MA, 1986, p. 17.

    2. [2]

      Ryu, M. S.; Kim, H. G.; Kim, H. Y.; Min, K. S.; Kim, H. J.; Lee, H. M. Prediction of the glass transition temperature and design of phase diagrams of butadiene rubber and styrene-butadiene rubber via molecular dynamics simulations. Phys. Chem. Chem. Phys. 2017, 19, 16498−16506.  doi: 10.1039/C7CP00080D

    3. [3]

      Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 1: Lewis base (σ) amine-type polar modifiers. Int. J. Polym. Anal. Charact. 2015, 20, 574−588.  doi: 10.1080/1023666X.2015.1053599

    4. [4]

      Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 2: Lewis base (σ) amine-ether and ether-type polar modifiers. Int. J. Polym. Anal. Charact. 2015, 20, 602−611.  doi: 10.1080/1023666X.2015.1054079

    5. [5]

      Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 3: Lewis acid alkoxide (μ) and Lewis base amine, amine-ether, and ether mixed-type (Σ+μ) polar modifiers. Int. J. Polym. Anal. Charact. 2016, 21, 44−45.  doi: 10.1080/1023666X.2015.1091906

    6. [6]

      Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 4: acid-base polar modifiers forming σ-μ complexes: amine-alkoxide, amine-ether-alkoxide, and ether-alkoxide. Int. J. Polym. Anal. Charact. 2016, 21, 59−68.  doi: 10.1080/1023666X.2016.1092655

    7. [7]

      Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 5: comparison of μ, σ, Σ+μ, and Σμ complexes. Int. J. Polym. Anal. Charact. 2017, 22, 51−61.  doi: 10.1080/1023666X.2016.1230264

    8. [8]

      Bywater, S.; Firat, Y.; Black, P. E. Microstructures of polybutadienes prepared by anionic polymerization in polar solvents. Ion-pair and solvent effects. J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 669−672.  doi: 10.1002/pol.1984.170220316

    9. [9]

      Arest-Yakubovich, A. A.; Basova, R. V.; Nakhmanovich, B. I.; Kristalnyi, E. V. The main special characteristics of anionic polymerization initiated by group II metals. Acta Polym. 1984, 35, 1−7.  doi: 10.1002/actp.1984.010350101

    10. [10]

      Salle, R.; Pham, Q. T. Polymérisation anionique des diènes. VI. Microstructure des polybutadiène et polyisoprène par résonance magnétique protonique à 250 MHz et mécanismes de propagation. J. Polym. Sci. Polym. Chem. Ed. 1977, 15, 1799−1810.  doi: 10.1002/pol.1977.170150802

    11. [11]

      Lochmann, L. Reaction of organolithium compounds with alkali metal alkoxides—a route to superbases. Eur. J. Inorg. Chem. 2000, 6, 1115−1126.  doi: 10.1002/(SICI)1099-0682(200006)2000:6<1115::AID-EJIC1115>3.0.CO;2-K

    12. [12]

      Schlosser, M.; Strunk, S. The “super-basic” butyllithium/potassium tert-butoxide mixture and other lickor-reagents. Tetrahedron Lett. 1984, 25, 741−744.  doi: 10.1016/S0040-4039(01)80014-9

    13. [13]

      Lochmann, L.; Petránek, J. More efficient metallation of alkylbenzenes by modified superbases from butyllithium and potassium alkoxides. Effect of alkoxide structure and concentration. Tetrahedron Lett. 1991, 32, 1483−1488.  doi: 10.1016/0040-4039(91)80364-C

    14. [14]

      Lochmann, L.; Trekoval, J. Lithium-potassium exchange in alkyllithium/potassium t-pentoxide systems: XIV. Interactions of alkoxides. J. Organomet. Chem. 1987, 326, 1−7.  doi: 10.1016/0022-328X(87)80117-1

    15. [15]

      Hsieh, H. L.; Wofford, C. F. Alkyllithium and alkali metal tert-butoxide as polymerization initiator. J. Polym. Sci. A1 1969, 7, 449−460.  doi: 10.1002/pol.1969.150070204

    16. [16]

      Maréchal, J. M.; Carlotti, S.; Shcheglova, L.; Deffieux, A. Stereoregulation in the anionic polymerization of styrene initiated by superbases. Polymer 2003, 44, 7601−7607.  doi: 10.1016/j.polymer.2003.09.051

    17. [17]

      Patterson, D. B.; Halasa, A. F. Anionic polymerization of 1,3-butadiene to highly crystalline high trans-1,4-poly(butadiene) with potassium catalysts generated from an alkyllithium and potassium tert-amyloxide. Macromolecules 1991, 24, 4489−4494.  doi: 10.1021/ma00016a002

    18. [18]

      Nakhmanovich, B. I.; Zolotareva, I. V.; Arest-Yakubovich, A. A. Study on the mechanism of anionic polymerization with mixed RLi-R′OK Initiators, 1. Polymerization of butadiene. Macromol. Chem. Phys. 1999, 200, 2015−2021.  doi: 10.1002/(SICI)1521-3935(19990901)200:9<2015::AID-MACP2015>3.0.CO;2-I

    19. [19]

      Wofford, C. F.; Hsieh, H. L. Copolymerization of butadiene and styrene by initiation with alkyllithium and alkali metal tert-butoxides. J. Polym. Sci. A1 1969, 7(2), 461−469.  doi: 10.1002/pol.1969.150070205

    20. [20]

      Desbois, P.; Fontanille, M.; Deffieux, A.; Warzelhan, V.; Schade, C. Towards the control of the reactivity in high temperature anionic polymerization of styrene: retarded anionic polymerization. 3 – Influence of triisobutylaluminum on the reactivity of polystyryllithium species. Macromol. Symp. 2000, 157, 151−160.  doi: 10.1002/1521-3900(200007)157:1<151::AID-MASY151>3.0.CO;2-9

    21. [21]

      Lochmann, L.; Janata, M. 50 Years of superbases made from organolithium compounds and heavier alkali metal alkoxides. Cent. Eur. J. Chem. 2014, 12, 537−548.  doi: 10.2478/s11532-014-0528-0

    22. [22]

      Hsieh, H.; Quirk, R. P. Anionic polymerization: Principles and practical applications. Marcel Dekker, New York, 1996

    23. [23]

      Worsfold, D. J.; Bywater, S. Lithium alkyl initiated polymerization of isoprene. Effect of cis/trans isomerization of organolithium compounds on polymer microstructure. Macromolecules 1978, 11, 582−586.  doi: 10.1021/ma60063a030

    24. [24]

      Halasa, A. F.; Mitchell, G. B.; Stayer, M.; Tate, D. P.; Oberster, A. E.; Koch, R. W. Metalation of unsaturated polymers by using activated organolithium compounds and the formation of graft copolymers. II. J. Polym. Sci. Polym. Chem. Ed. 1976, 14, 497−506.  doi: 10.1002/pol.1976.170140220

    25. [25]

      Carlotti, S.; Ménoret, S.; Barabanova, A.; Desbois, P.; Deffieux, A. Effect of aluminum derivatives in the retarded styrene anionic polymerization. Polymer 2005, 46, 6836−6843.  doi: 10.1016/j.polymer.2005.05.124

  • 加载中
    1. [1]

      Hong Xia Zhang Yang Li Chun Qing Zhang Yan Ming Hu Yu Rong Wang Hong Wei Ma Wei Li . Synthesis and characterization of star-comb polybutadiene and poly(ethylene-co-butene). Chinese Chemical Letters, 2010, 21(3): 361-364. doi: 10.1016/j.cclet.2009.11.031

    2. [2]

      Hong Wei Ma Bai Wang Chun Qing Zhang Yang Li Yan Ming Hu Yu Rong Wang . Synthesis and characterization of poly[(4-vinylphenyl)dimethyl-silane]-b-polybutadiene-b-poly[(4-vinylphenyl)dimethylsilane](PVPDMS-b-PBd-b-PVPDMS). Chinese Chemical Letters, 2011, 22(11): 1371-1374. doi: 10.1016/j.cclet.2011.05.004

    3. [3]

      Shi XiaolinJiang Jingyang . Anionic polymerization initiated by lithium amides for preparing high molecular weight polyacrylonitrile. Chinese Chemical Letters, 2019, 30(2): 473-476. doi: 10.1016/j.cclet.2018.01.040

    4. [4]

      Hai Feng LIU Yang LI Yu Rong WANG Yan REN Zhan Xia LU Jin Bo ZHAO . Synthesis and Characterization of Star-branched Polyisobutylene by Combination of Anionic Polymerization and Cationic Polymerization. Chinese Chemical Letters, 2006, 17(8): 1117-1120.

    5. [5]

      Mamat Turson Xiao Lei Zhuang Hui Na Liu Ping Jiang Xiang Chao Dong . Evaluation of the clenbuterol imprinted monolithic column prepared by reversible addition-fragmentation chain transfer polymerization. Chinese Chemical Letters, 2009, 20(9): 1136-1140. doi: 10.1016/j.cclet.2009.04.012

    6. [6]

      Xiao Wei Zhou Hui Ming Jin Lin Nan Zhang . Influence of pH value on microstructure and thermal stability of Ni-P electroless coating prepared in acidic condition. Chinese Chemical Letters, 2009, 20(7): 845-848. doi: 10.1016/j.cclet.2009.01.040

    7. [7]

      Qing Min Zhang Chuang Chen Hong Xia Zhang Chun Qing Zhang Yang Li Xi Gao Jian . Synthesis and characterization of star-comb styrene/butadiene copolymer. Chinese Chemical Letters, 2010, 21(11): 1370-1373. doi: 10.1016/j.cclet.2010.05.013

    8. [8]

      Hai Yan Zhang Xing Ying Zhang . Synthesis and characterization of miktoarm star copolymer of styrene and butadiene using multifunctional macromolecular initiator. Chinese Chemical Letters, 2009, 20(9): 1131-1135. doi: 10.1016/j.cclet.2009.04.003

    9. [9]

      Jie YinFei ZhaoChao TaoXue-Ding WangXiao-Jun Liu . Listen to the chemical and histological information in biological tissue. Chinese Chemical Letters, 2015, 26(4): 395-400. doi: 10.1016/j.cclet.2015.01.030

    10. [10]

      Kayla J. PyperTaylor C. EvansBart M. Bartlett . Synthesis of α-SnWO4 thin-film electrodes by hydrothermal conversion from crystalline WO3. Chinese Chemical Letters, 2015, 26(4): 474-478. doi: 10.1016/j.cclet.2015.01.027

    11. [11]

      Ya-Wen ZhouMeng-Yuan WangWei ZhouFu HanBao-Cai Xu . Dielectric relaxation behavior of SDS/β-CD organized self-assembly in dilute aqueous solution. Chinese Chemical Letters, 2015, 26(7): 905-908. doi: 10.1016/j.cclet.2015.05.014

    12. [12]

      Hai Ning Zhang . Formation of surface-attached microstructured polyelectrolyte brushes. Chinese Chemical Letters, 2008, 19(8): 988-991. doi: 10.1016/j.cclet.2008.04.024

    13. [13]

      Cui-Cui Zhuang Jia Feng Hong Xu Ling Li Xiao-Wei Liu . Synthesis of boron nitride nanotube films with a nanoparticle catalyst. Chinese Chemical Letters, 2016, 27(6): 871-874. doi: 10.1016/j.cclet.2016.01.034

    14. [14]

      Yan-Hui SunPei-Pei DongXu LangJun-Min Nan . A novel rose flower-like SnO hierarchical structure synthesized by a hydrothermal method in an ethanol/water system. Chinese Chemical Letters, 2014, 25(6): 915-918. doi: 10.1016/j.cclet.2014.04.013

Metrics
  • PDF Downloads(0)
  • Abstract views(3169)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return