Citation: Antoine Forens, Kevin Roos, Charlotte Dire, Benoit Gadenne, Stéphane Carlotti. Anionic Polymerization of Butadiene Using Lithium/Potassium Multi-metallic Systems: Influence on Polymerization Control and Polybutadiene Microstructure[J]. Chinese Journal of Polymer Science, ;2020, 38(4): 357-362. doi: 10.1007/s10118-020-2355-4 shu

Anionic Polymerization of Butadiene Using Lithium/Potassium Multi-metallic Systems: Influence on Polymerization Control and Polybutadiene Microstructure

  • Corresponding author: Stéphane Carlotti, carlotti@enscbp.fr
  • Received Date: 15 July 2019
    Revised Date: 2 September 2019
    Available Online: 18 November 2019

  • Thermal, mechanical, and viscoelastic properties of polybutadiene-based rubber materials are highly dependent on polybutadiene microstructure. The use of polar modifier in association with alkyllithium is a well-known method to obtain polybutadiene with a high vinyl content. Another approach is to use bimetallic initiating species such as alkyllithium combined to heavier alkali metal alkoxide (RONa, ROK…). The polymerization control is nevertheless not achieved and several parameters were found to influence it. Using bimetallic initiating systems based on alkyllithium and a potassium alkoxide, alkyllithium structure, initiator preformation time, and initiator composition were identified as parameters influencing the anionic polymerization process of butadiene and/or polybutadiene microstructure. In addition, the use of trimetallic systems based on alkyllithium, potassium alkoxide, and alkylaluminum was investigated in order to prevent side reactions regardless of the [K]/[Li] ratio and of the initiator preformation time.
  • 加载中
    1. [1]

      Aggarwal, S. L.; Hargis, I. G.; Livigni, R. A.; Fabris, H. J.; Marker, L. F, in Advances in elastomers and rubber elasticity, ed. by Lal, J.; Mark, J. E. Springer US, Boston MA, 1986, p. 17.

    2. [2]

      Ryu, M. S.; Kim, H. G.; Kim, H. Y.; Min, K. S.; Kim, H. J.; Lee, H. M. Prediction of the glass transition temperature and design of phase diagrams of butadiene rubber and styrene-butadiene rubber via molecular dynamics simulations. Phys. Chem. Chem. Phys. 2017, 19, 16498−16506.  doi: 10.1039/C7CP00080D

    3. [3]

      Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 1: Lewis base (σ) amine-type polar modifiers. Int. J. Polym. Anal. Charact. 2015, 20, 574−588.  doi: 10.1080/1023666X.2015.1053599

    4. [4]

      Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 2: Lewis base (σ) amine-ether and ether-type polar modifiers. Int. J. Polym. Anal. Charact. 2015, 20, 602−611.  doi: 10.1080/1023666X.2015.1054079

    5. [5]

      Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 3: Lewis acid alkoxide (μ) and Lewis base amine, amine-ether, and ether mixed-type (Σ+μ) polar modifiers. Int. J. Polym. Anal. Charact. 2016, 21, 44−45.  doi: 10.1080/1023666X.2015.1091906

    6. [6]

      Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 4: acid-base polar modifiers forming σ-μ complexes: amine-alkoxide, amine-ether-alkoxide, and ether-alkoxide. Int. J. Polym. Anal. Charact. 2016, 21, 59−68.  doi: 10.1080/1023666X.2016.1092655

    7. [7]

      Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 5: comparison of μ, σ, Σ+μ, and Σμ complexes. Int. J. Polym. Anal. Charact. 2017, 22, 51−61.  doi: 10.1080/1023666X.2016.1230264

    8. [8]

      Bywater, S.; Firat, Y.; Black, P. E. Microstructures of polybutadienes prepared by anionic polymerization in polar solvents. Ion-pair and solvent effects. J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 669−672.  doi: 10.1002/pol.1984.170220316

    9. [9]

      Arest-Yakubovich, A. A.; Basova, R. V.; Nakhmanovich, B. I.; Kristalnyi, E. V. The main special characteristics of anionic polymerization initiated by group II metals. Acta Polym. 1984, 35, 1−7.  doi: 10.1002/actp.1984.010350101

    10. [10]

      Salle, R.; Pham, Q. T. Polymérisation anionique des diènes. VI. Microstructure des polybutadiène et polyisoprène par résonance magnétique protonique à 250 MHz et mécanismes de propagation. J. Polym. Sci. Polym. Chem. Ed. 1977, 15, 1799−1810.  doi: 10.1002/pol.1977.170150802

    11. [11]

      Lochmann, L. Reaction of organolithium compounds with alkali metal alkoxides—a route to superbases. Eur. J. Inorg. Chem. 2000, 6, 1115−1126.  doi: 10.1002/(SICI)1099-0682(200006)2000:6<1115::AID-EJIC1115>3.0.CO;2-K

    12. [12]

      Schlosser, M.; Strunk, S. The “super-basic” butyllithium/potassium tert-butoxide mixture and other lickor-reagents. Tetrahedron Lett. 1984, 25, 741−744.  doi: 10.1016/S0040-4039(01)80014-9

    13. [13]

      Lochmann, L.; Petránek, J. More efficient metallation of alkylbenzenes by modified superbases from butyllithium and potassium alkoxides. Effect of alkoxide structure and concentration. Tetrahedron Lett. 1991, 32, 1483−1488.  doi: 10.1016/0040-4039(91)80364-C

    14. [14]

      Lochmann, L.; Trekoval, J. Lithium-potassium exchange in alkyllithium/potassium t-pentoxide systems: XIV. Interactions of alkoxides. J. Organomet. Chem. 1987, 326, 1−7.  doi: 10.1016/0022-328X(87)80117-1

    15. [15]

      Hsieh, H. L.; Wofford, C. F. Alkyllithium and alkali metal tert-butoxide as polymerization initiator. J. Polym. Sci. A1 1969, 7, 449−460.  doi: 10.1002/pol.1969.150070204

    16. [16]

      Maréchal, J. M.; Carlotti, S.; Shcheglova, L.; Deffieux, A. Stereoregulation in the anionic polymerization of styrene initiated by superbases. Polymer 2003, 44, 7601−7607.  doi: 10.1016/j.polymer.2003.09.051

    17. [17]

      Patterson, D. B.; Halasa, A. F. Anionic polymerization of 1,3-butadiene to highly crystalline high trans-1,4-poly(butadiene) with potassium catalysts generated from an alkyllithium and potassium tert-amyloxide. Macromolecules 1991, 24, 4489−4494.  doi: 10.1021/ma00016a002

    18. [18]

      Nakhmanovich, B. I.; Zolotareva, I. V.; Arest-Yakubovich, A. A. Study on the mechanism of anionic polymerization with mixed RLi-R′OK Initiators, 1. Polymerization of butadiene. Macromol. Chem. Phys. 1999, 200, 2015−2021.  doi: 10.1002/(SICI)1521-3935(19990901)200:9<2015::AID-MACP2015>3.0.CO;2-I

    19. [19]

      Wofford, C. F.; Hsieh, H. L. Copolymerization of butadiene and styrene by initiation with alkyllithium and alkali metal tert-butoxides. J. Polym. Sci. A1 1969, 7(2), 461−469.  doi: 10.1002/pol.1969.150070205

    20. [20]

      Desbois, P.; Fontanille, M.; Deffieux, A.; Warzelhan, V.; Schade, C. Towards the control of the reactivity in high temperature anionic polymerization of styrene: retarded anionic polymerization. 3 – Influence of triisobutylaluminum on the reactivity of polystyryllithium species. Macromol. Symp. 2000, 157, 151−160.  doi: 10.1002/1521-3900(200007)157:1<151::AID-MASY151>3.0.CO;2-9

    21. [21]

      Lochmann, L.; Janata, M. 50 Years of superbases made from organolithium compounds and heavier alkali metal alkoxides. Cent. Eur. J. Chem. 2014, 12, 537−548.  doi: 10.2478/s11532-014-0528-0

    22. [22]

      Hsieh, H.; Quirk, R. P. Anionic polymerization: Principles and practical applications. Marcel Dekker, New York, 1996

    23. [23]

      Worsfold, D. J.; Bywater, S. Lithium alkyl initiated polymerization of isoprene. Effect of cis/trans isomerization of organolithium compounds on polymer microstructure. Macromolecules 1978, 11, 582−586.  doi: 10.1021/ma60063a030

    24. [24]

      Halasa, A. F.; Mitchell, G. B.; Stayer, M.; Tate, D. P.; Oberster, A. E.; Koch, R. W. Metalation of unsaturated polymers by using activated organolithium compounds and the formation of graft copolymers. II. J. Polym. Sci. Polym. Chem. Ed. 1976, 14, 497−506.  doi: 10.1002/pol.1976.170140220

    25. [25]

      Carlotti, S.; Ménoret, S.; Barabanova, A.; Desbois, P.; Deffieux, A. Effect of aluminum derivatives in the retarded styrene anionic polymerization. Polymer 2005, 46, 6836−6843.  doi: 10.1016/j.polymer.2005.05.124

  • 加载中
    1. [1]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    2. [2]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    3. [3]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

    4. [4]

      Mingxin SongLijing XieFangyuan SuZonglin YiQuangui GuoCheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266

    5. [5]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    6. [6]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    7. [7]

      Jiaxiang GuoZeyi LiTianyu ZhangXinyu TianYue WangChuandong Dou . Thienothiophene-centered ladder-type π-systems that feature distinct quinoidal π-extension. Chinese Chemical Letters, 2024, 35(5): 109337-. doi: 10.1016/j.cclet.2023.109337

    8. [8]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    9. [9]

      Lei WangJun-Jie WuChang-Cun YanWan-Ying YangZong-Lu CheXin-Yu XiaXue-Dong WangLiang-Sheng Liao . Near-infrared organic lasers with ultra-broad emission bands by simultaneously harnessing four-level and six-level systems. Chinese Chemical Letters, 2024, 35(8): 109365-. doi: 10.1016/j.cclet.2023.109365

    10. [10]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    11. [11]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    12. [12]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    13. [13]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    14. [14]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    15. [15]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    16. [16]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    17. [17]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    18. [18]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    19. [19]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    20. [20]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

Metrics
  • PDF Downloads(0)
  • Abstract views(3731)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return