Citation: Hong-Ge Tan, Gang Xia, Li-Xiang Liu, Xiao-Hui Niu, Qing-Hai Hao. Surface Patterns of a Tetrahedral Polyelectrolyte Brush Induced by Grafting Density and Charge Fraction[J]. Chinese Journal of Polymer Science, ;2020, 38(4): 394-402. doi: 10.1007/s10118-020-2351-8 shu

Surface Patterns of a Tetrahedral Polyelectrolyte Brush Induced by Grafting Density and Charge Fraction


  • Author Bio:



    Hao, Q. H
  • Corresponding author: Hong-Ge Tan, thg@iccas.ac.cn
  • Received Date: 23 July 2019
    Revised Date: 28 August 2019
    Accepted Date: 28 August 2019
    Available Online: 1 April 2020

  • A tetrahedral polyelectrolyte brush in the presence of trivalent counterions is researched under the condition of good solution by means of molecular dynamics simulations. Grafting density and charge fraction are varied to generate a series of surface patterns. Lateral microphase separation happens and various interesting pinned patches appear at appropriate charge fraction and grafting density. Through a careful analysis on the brush thickness, the pair correlation functions, the distributions of net charge, and the four states of trivalent counterions in the brush, we find that the ordered surface patterns and special properties are induced by the pure electrostatic correlation effect of trivalent ions even in the good solvent. Furthermore, the dependences of electrostatic correlation on the charge fraction of tethered chains are evaluated for fixed grafting density. Also, our results can serve as a guide for precise control over the stimuli-responsive materials rational and self-assembly of nanoparticles.
  • 加载中
    1. [1]

      Rühe, J.; Ballauff, M.; Biesalski, M.; Dziezok, P.; Gröhn, F.; Johannsmann, D.; Houbenov, N.; Hugenberg, N.; Konradi, R.; Minko, S.; Motornov, M.; Netz, R. R.; Schmidt, M.; Seidel, C.; Stamm, M.; Stephan, T.; Usov, D.; Zhang, H. Polyelectrolyte brushes. Adv. Polym. Sci. 2004, 165, 79−150.

    2. [2]

      Hao, Q. H.; Zheng, Z.; Xia, G.; Tan, H. G. Brownian dynamics simulations of rigid polyelectrolyte chains grafting to spherical colloid. Chinese J. Polym. Sci. 2018, 36, 791−798.  doi: 10.1007/s10118-018-2042-x

    3. [3]

      Jaquet, B.; Wei, D.; Reck, B.; Reinhold, F.; Zhang, X. Y.; Wu, H.; Morbidelli, M. Stabilization of polymer colloid dispersions with pH-sensitive poly-acrylic acid brushes. Colloid Polym. Sci. 2013, 291, 1659−1667.  doi: 10.1007/s00396-013-2900-6

    4. [4]

      Zhang, X.; Yang, P. P.; Dai, Y. L.; Ma, P. A.; Li, X. J.; Cheng, Z. Y.; Hou, Z. Y.; Kang, X. J.; Li, C. X.; Lin, J. Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/pH dual-responsive drug controlled release. Adv. Funct. Mater. 2013, 23, 4067−4078.  doi: 10.1002/adfm.201300136

    5. [5]

      Kreer, T. Polymer-brush lubrication: a review of recent theoretical advances. Soft Matter 2016, 12, 3479−3501.  doi: 10.1039/C5SM02919H

    6. [6]

      ShamsiJazeyi, H.; Miller, C. A.; Wong, M. S.; Tour, J. M.; Verduzco, R. Polymer-coated nanoparticles for enhanced oil recovery. J. Appl. Polym. Sci. 2014, 134, 40576.

    7. [7]

      Zhulina, E.; Singh, C.; Balazs, A. C. Behavior of tethered polyelectrolytes in poor solvents. J. Chem. Phys. 1998, 108, 1175−1183.  doi: 10.1063/1.475498

    8. [8]

      Tagliazucchi, M.; Cruz, M. O. D. L.; Szleifer, I. Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions. Proc. Natl. Acad. Sci. 2010, 107, 5300−5305.  doi: 10.1073/pnas.0913340107

    9. [9]

      Tagliazucchi, M.; Calvo, E. J.; Szleifer, I. Molecular modeling of responsive polymer films. AIChE J. 2010, 56, 1952−1959.

    10. [10]

      Brettmann, B.; Pincus, P.; Tirrell, M. Lateral structure formation in polyelectrolyte brushes induced by multivalent ions. Macromolecules 2017, 50, 1225−1235.  doi: 10.1021/acs.macromol.6b02563

    11. [11]

      Günther, J. U.; Ahrens, H.; Förster, S.; Helm, C. A. Bundle formation in polyelectrolyte brushes. Phys. Rev. Lett. 2008, 101, 258303.  doi: 10.1103/PhysRevLett.101.258303

    12. [12]

      Yamada, T.; Kokado, K.; Higaki, Y.; Takahara, A.; Sada, K. Preparation and morphology variation of lipophilic polyelectrolyte brush functioning in nonpolar solvents. Chem. Lett. 2014, 43, 1300−1302.  doi: 10.1246/cl.140341

    13. [13]

      Bracha, D.; Bar-Ziv, R. H. Dendritic and nanowire assemblies of condensed DNA polymer brushes. J. Am. Chem. Soc. 2014, 136, 4945−4953.  doi: 10.1021/ja410960w

    14. [14]

      Yu, J.; Jackson, N. E.; Xu, X.; Brettmann, B. K.; Ruths, M.; Pablo, J. J. D.; Tirrell, M. Multivalent ions induce lateral structural inhomogeneities in polyelectrolyte brushes. Sci. Adv. 2017, 3, 1497.  doi: 10.1126/sciadv.aao1497

    15. [15]

      Carrillo, J. M. Y.; Dobrynin, A. V. Morphologies of planar polyelectrolyte brushes in a poor solvent: molecular dynamics simulations and scaling analysis. Langmuir 2009, 25, 13158−13168.  doi: 10.1021/la901839j

    16. [16]

      He, G. L.; Merlitz, H.; Sommer, J. U. Molecular dynamics simulations of polyelectrolyte brushes under poor solvent conditions: Origins of bundle formation. J. Chem. Phys. 2014, 140, 104911.  doi: 10.1063/1.4867466

    17. [17]

      Jackson, N. E.; Brettmann, B. K.; Vishwanath, V.; Tirrell, M.; Pablo, J. J. D. Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes. ACS Macro Lett. 2017, 6, 155−160.  doi: 10.1021/acsmacrolett.6b00837

    18. [18]

      Sandberg, D. J.; Carrillo, J. M. Y.; Dobrynin A. V. Molecular dynamics simulations of polyelectrolyte brushes: from single chains to bundles of chains. Langmuir 2007, 23, 12716−12728.  doi: 10.1021/la702203c

    19. [19]

      Samokhina, L.; Schrinner, M.; Ballauff, M. Binding of oppositely charged surfactants to spherical polyelectrolyte brushes: a study by cryogenic transmission electron microscopy. Langmuir 2007, 23, 3615−3619.  doi: 10.1021/la063178t

    20. [20]

      Chen, Q.; Bae, S. C.; Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 2011, 469, 381−384.  doi: 10.1038/nature09713

    21. [21]

      Yang, S. W.; Gao, L. Controlled synthesis and self-assembly of CeO2 nanocubes. J. Am. Chem. Soc. 2006, 128, 9330−9331.  doi: 10.1021/ja063359h

    22. [22]

      Choueiri, R. M.; Galati, E.; Thérien-Aubin, H.; Klinkova, A.; Larin, E. M.; Querejeta-Fernández, A.; Han, L.; Xin, H. L.; Gang, O.; Zhulina, E. B.; Rubinstein, M.; Kumacheva, E. Surface patterning of nanoparticles with polymer patches. Nature 2016, 538, 79−83.  doi: 10.1038/nature19089

    23. [23]

      Kravchenko, V. S.; Potemkin, I. I. Self-assembly of rarely polymer-grafted nanoparticles in dilute solutions and on a surface: from non-spherical vesicles to graphene-like sheets. Polymer 2018, 142, 23−32.  doi: 10.1016/j.polymer.2018.03.019

    24. [24]

      Ross, M. B.; Ku, J. C.; Vaccarezza. V. M.; Schatz, G. C.; Mirkin, C. A. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices. Nat. Nanotechnol. 2015, 10, 453−458.  doi: 10.1038/nnano.2015.68

    25. [25]

      Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 2011, 111, 3736−3827.  doi: 10.1021/cr1004452

    26. [26]

      Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1−19.  doi: 10.1006/jcph.1995.1039

    27. [27]

      Csajka, F. S.; Seidel, C. Strongly charged polyelectrolyte brushes: A molecular dynamics study. Macromolecules 2000, 33, 2728−2739.  doi: 10.1021/ma990096l

    28. [28]

      Hao, Q. H.; Xia, G.; Tan, H. G.; Chen, E. Q.; Yang, S. Surface morphologies of spherical polyelectrolyte brushes induced by trivalent salt ions. Phys. Chem. Chem. Phys. 2018, 20, 26542−26551.  doi: 10.1039/C8CP04235G

    29. [29]

      Hoda, N.; Larson, R. G. Explicit- and implicit-solvent molecular dynamics simulations of complex formation between polycations and polyanions. Macromolecules 2009, 42, 8851−8863.  doi: 10.1021/ma901632c

    30. [30]

      Huißmann, S.; Likos, C. N.; Blaak, R. Explicit vs implicit water simulations of charged dendrimers. Macromolecules 2012, 45, 2562−2569.  doi: 10.1021/ma202520d

    31. [31]

      Carrillo, J. M. Y.; Dobrynin, A. V. Polyelectrolytes in salt solutions: Molecular dynamics simulations. Macromolecules 2011, 44, 5798−5816.  doi: 10.1021/ma2007943

    32. [32]

      Grest, G. S.; Kremer, K.; Witten, T. A. Structure of many-arm star polymers: a molecular dynamics simulation. Macromolecules 1987, 20, 1376.  doi: 10.1021/ma00172a035

    33. [33]

      Ghelichi, M.; Qazvini, N. T. Self-organization of hydrophobic-capped triblock copolymers with polyelectrolyte midblock: A coarse-grained molecular dynamics simulation study. Soft Matter 2016, 12, 4611−4620.  doi: 10.1039/C6SM00414H

    34. [34]

      Mei, Y.; Hoffmann, M.; Ballauff, M.; Jusufi, A. Spherical polyelectrolyte brushes in the presence of multivalent counterions: the effect of fluctuations and correlations as determined by molecular dynamics simulations. Phys. Rev. E 2008, 77, 031805.  doi: 10.1103/PhysRevE.77.031805

    35. [35]

      Jusufi, A.; Likos, C. N.; Löwen, H. Counterion-induced entropic interactions in solutions of strongly stretched, osmotic polyelectrolyte stars. J. Chem. Phys. 2002, 116, 11011−11027.  doi: 10.1063/1.1480007

    36. [36]

      Pollock, E. L.; Glosli, J. Comments on P3M, FMM, and the Ewald method for large periodic coulombic systems. Comput. Phys. Commun. 1996, 95, 93−110.  doi: 10.1016/0010-4655(96)00043-4

    37. [37]

      Lane, J. M. D.; Grest, G. S. Spontaneous asymmetry of coated spherical nanoparticles in solution and at liquid-vapor interfaces. Phys. Rev. Lett. 2010, 104, 235501−235504.  doi: 10.1103/PhysRevLett.104.235501

    38. [38]

      Chi, P.; Li, B. H.; Shi, A. C. Conformation transitions of a polyelectrolyte chain: a replica-exchange Monte-Carlo study. Phys. Rev. E 2011, 84, 021804.

    39. [39]

      Chi, P.; Wang, Z.; Yin Y. H.; Li, B. H. Finite-length effects on the coil-globule transition of a strongly charged polyelectrolyte chain in a salt-free solvent. Phys. Rev. E 2013, 87, 042608.  doi: 10.1103/PhysRevE.87.042608

  • 加载中
    1. [1]

      Qiang Wang Jian Wu Wang Zheng Ting Cai Wei Ren Xu . A molecular dynamics simulation study of peptide deformylase from Leptospira interrogans complex: Exploring the closing mechanism of the substrate pocket. Chinese Chemical Letters, 2008, 19(4): 497-500. doi: 10.1016/j.cclet.2008.01.027

    2. [2]

      Ying Wu Lin Tian Lei Ying Li Fu Liao . Dynamic consequences of mutating the typical HPGG motif of apocytochrome b5 revealed by computer simulation. Chinese Chemical Letters, 2009, 20(5): 631-634. doi: 10.1016/j.cclet.2009.01.037

    3. [3]

      CHEN WenqiongGUAN YongjiZHANG XiaopingDENG Youquan . Influence of External Electric Field on Vibrational Spectrum of Imidazolium-Based Ionic Liquids Probed by Molecular Dynamics Simulation. Acta Physico-Chimica Sinica, 2018, 34(8): 912-919. doi: 10.3866/PKU.WHXB201801091

    4. [4]

      Yi Jian CHEN Gui Ying XU Shi Ling YUAN Hai Ying SUN . Dynamic Study of Gemini Surfactant and Single-chain Surfactant at Air/Water Interface. Chinese Chemical Letters, 2005, 16(5): 688-690.

    5. [5]

      LYU KangjiePENG YanqiuXIAO LiLU JuntaoZHUANG Lin . Atomistic Understanding of the Peculiar Dissolution Behavior of Alkaline Polymer Electrolytes in Alcohol/Water Mixed Solvents. Acta Physico-Chimica Sinica, 2019, 35(4): 378-384. doi: 10.3866/PKU.WHXB201805031

    6. [6]

      ZHANG TaoQIU YunguangLUO QichaoCHENG XiZHAO LifenYAN XinPENG BoJIANG HualiangYANG Huaiyu . Concentration Dependent Effects of Ca2+ and Mg2+ on the Phosphatidylethanolamine-Phosphatidylglycerol Bilayer. Acta Physico-Chimica Sinica, 2019, 35(8): 840-849. doi: 10.3866/PKU.WHXB201811016

    7. [7]

      Shi Ling YUAN Zheng Ting CAI Li XIAO . Molecular Simulation study of Alkyl Monolayers on Si(Ⅲ) Surface. Chinese Chemical Letters, 2003, 14(2): 213-216.

    8. [8]

      XIN LiangSUN Huai . On the Simulation of Complex Reactions Using Replica Exchange Molecular Dynamics (REMD). Acta Physico-Chimica Sinica, 2018, 34(10): 1179-1188. doi: 10.3866/PKU.WHXB201803161

    9. [9]

      Tai Ning LIANG Xiang Yu ZHANG Xiao Zhen YANG . Molecular Dynamics Simulation of Glass Transition Behavior of Polyimide Ensemble. Chinese Chemical Letters, 2001, 12(9): 827-828.

    10. [10]

      Xiao Zhen YANG Shaw Ling HSU . MOLECULAR DYNAMICS SIMULATION ON VIERATIONAL SPECTROSCOPIC FEATURES OF HYDROGEN BONDS IN CRYSTALLINE POLYMERS. Chinese Chemical Letters, 1993, 4(7): 635-638.

    11. [11]

      WANG WeiXU Hui-YingZHOU Lv-YanTANG Dong-Yue . QSPR Studies on the Physicochemical Properties of Polychlorinated Diphenyl Sulfides-The Application of Theoretical Descriptors Derived from Electrostatic Potentials on Molecular Surface. Chinese Journal of Structural Chemistry, 2015, 34(7): 995-1003. doi: 10.14102/j.cnki.0254-5861.2011-0626

    12. [12]

      YIN DiQIU ZongyangLI PaiLI Zhenyu . A Molecular Dynamics Study of Carbon Dimerization on Cu(111) Surface with Optimized DFTB Parameters. Acta Physico-Chimica Sinica, 2018, 34(10): 1116-1123. doi: 10.3866/PKU.WHXB201801151

    13. [13]

      XIONG YanghengWU HaoGAO JianshuCHEN WenZHANG JingchaoYUE Yanan . Toward Improved Thermal Conductance of Graphene-Polyethylene Composites via Surface Defect Engineering: a Molecular Dynamics Study. Acta Physico-Chimica Sinica, 2019, 35(10): 1150-1156. doi: 10.3866/PKU.WHXB201901002

    14. [14]

      Hai Ning Zhang . Formation of surface-attached microstructured polyelectrolyte brushes. Chinese Chemical Letters, 2008, 19(8): 988-991. doi: 10.1016/j.cclet.2008.04.024

    15. [15]

      LÜ Wen-JieHU Yao-FengZHAN Bi-CaiLIU Zhen-HaiSHANG Ya-ZhuoWANG Hua-LinLIU Hong-Lai . Study on Mechanism of Surfactant Influencing on Sludge Dewatering Performance:Molecular Dynamics Simulations of the Interaction between Gemini Surfactant and Polyelectrolyte. Acta Physico-Chimica Sinica, 2014, 30(5): 811-820. doi: 10.3866/PKU.WHXB201403201

    16. [16]

      YU Xiao-BinLIU Jun-BoYUAN Xing . Simulation and Preparation of Molecular Imprinting System with Atrazine as Template. Chinese Journal of Structural Chemistry, 2015, 34(4): 488-496. doi: 10.14102/j.cnki.0254-5861.2011-0603

Metrics
  • PDF Downloads(0)
  • Abstract views(80)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return