Conformational Properties of Comb-shaped Polyelectrolytes with Negatively Charged Backbone and Neutral Side Chains Studied by a Generic Coarse-grained Bead-and-Spring Model

Jian-Hua Chen Li-Qun Lu Hong-Xia Zhao Yong Yang Xin Shu Qian-Ping Ran

Citation:  Jian-Hua Chen, Li-Qun Lu, Hong-Xia Zhao, Yong Yang, Xin Shu, Qian-Ping Ran. Conformational Properties of Comb-shaped Polyelectrolytes with Negatively Charged Backbone and Neutral Side Chains Studied by a Generic Coarse-grained Bead-and-Spring Model[J]. Chinese Journal of Polymer Science, 2020, 38(4): 371-381. doi: 10.1007/s10118-020-2350-9 shu

Conformational Properties of Comb-shaped Polyelectrolytes with Negatively Charged Backbone and Neutral Side Chains Studied by a Generic Coarse-grained Bead-and-Spring Model


    1. [1]

      Voycheck, C. L.; Tan, J. S.; Hara, M. Polyelectrolytes: science and technology. Marcel Dekker, Inc., New York, 1993, p. 250.

    2. [2]

      Holm, C.; Joanny, J. F.; Kremer, K.; Netz, R. R.; Reineker, P.; Seidel, C.; Vilgis, T. A.; Winkler, R. G. Polyelectrolyte theory. in Polyelectrolytes with defined molecular architecture II. Berlin, Heidelberg, 2004, p. 67.

    3. [3]

      Chremos, A.; Douglas, J. F. Influence of higher valent ions on flexible polyelectrolyte stiffness and counter-ion distribution. J. Chem. Phys. 2016, 144, 164904−164913. doi: 10.1063/1.4947221

    4. [4]

      Stevens, M. J.; Mcintosh, D.; Saleh, O. Simulations of stretching a strong, flexible polyelectrolyte. Macromolecules 2012, 45, 5757−5765. doi: 10.1021/ma300899x

    5. [5]

      Toan, N. M.; Thirumalai, D. On the origin of the unusual behavior in the stretching of single-stranded DNA. J. Chem. Phys. 2012, 136, 235103−235108. doi: 10.1063/1.4729371

    6. [6]

      Elder, R. M.; Jayaraman, A. Coarse-grained simulation studies of effects of polycation architecture on structure of the polycation and polycation-polyanion complexes. Macromolecules 2012, 45, 8083−8096. doi: 10.1021/ma3011944

    7. [7]

      Bayramoglu, B.; Faller, R. Coarse-grained modeling of polystyrene in various environments by iterative Boltzmann inversion. Macromolecules 2012, 45, 9205−9249. doi: 10.1021/ma301280b

    8. [8]

      Carrillo, J. M. Y.; Dobrynin, A. V. Polyelectrolytes in salt solutions: molecular dynamics simulations. Macromolecules 2011, 44, 5798−5816. doi: 10.1021/ma2007943

    9. [9]

      Carrillo, J. M. Y.; Dobrynin, A. V. Detailed molecular dynamics simulations of a model NaPSS in water. J. Phys. Chem. B 2010, 114, 9391−9399. doi: 10.1021/jp101978k

    10. [10]

      Saleh, O.; Mcintosh, D.; Pincus, P.; Ribeck, N. Nonlinear low-force elasticity of single-stranded DNA molecules. Phys. Rev. Lett. 2009, 102, 068301. doi: 10.1103/PhysRevLett.102.068301

    11. [11]

      Chang, R.; Yethiraj, A. Dilute solutions of strongly charged flexible polyelectrolytes in poor solvents: molecular dynamics simulations with explicit solvent. Macromolecules 2006, 39, 821−828. doi: 10.1021/ma051095y

    12. [12]

      Liao, Q.; Dobrynin, A. V.; Rubinstein, M. Counterion-correlation-induced attraction and necklace formation in polyelectrolyte solutions: theory and simulations. Macromolecules 2006, 39, 1920−1938. doi: 10.1021/ma052086s

    13. [13]

      Dobrynin, A. V.; Rubinstein, M. Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 2005, 30, 1049−1118. doi: 10.1016/j.progpolymsci.2005.07.006

    14. [14]

      Limbach, H. J.; Holm, C. Single-chain properties of polyelectrolytes in poor solvent. J. Phys. Chem. B 2003, 107, 8041−8055. doi: 10.1021/jp027606p

    15. [15]

      Micka, U.; Holm, C.; Kremer, K. Strongly charged, flexible polyelectrolytes in poor solvents: molecular dynamics simulations. Langmuir 1999, 15, 4033−4044. doi: 10.1021/la981191a

    16. [16]

      Stevens, M. J.; Kremer, K. The nature of flexible linear polyelectrolytes in salt free solution: a molecular dynamics study. J. Chem. Phys. 1995, 103, 1669. doi: 10.1063/1.470698

    17. [17]

      Dobrynin, A. V. Theory and simulations of charged polymers: from solution properties to polymeric nanomaterials. Curr. Opin. Colloid In. 2008, 13, 376−388. doi: 10.1016/j.cocis.2008.03.006

    18. [18]

      Khokhlov, A. R.; Khalatur, P. G. Solution properties of charged hydrophobic/hydrophilic copolymers. Curr. Opin. Colloid In. 2005, 10, 22−29. doi: 10.1016/j.cocis.2005.04.003

    19. [19]

      Burak, Y.; Ariel, G.; Andelman, D. Onset of DNA aggregation in presence of monovalent and multivalent counterions. Biophys. J. 2003, 85, 2100−2110. doi: 10.1016/S0006-3495(03)74638-4

    20. [20]

      Deming, T. J. Synthesis of side-chain modified polypeptides. Chem. Rev. 2015, 116, 786−808.

    21. [21]

      Zhang, Y.; Lu, H.; Lin, Y.; Cheng, J. Water-soluble polypeptides with elongated, charged side chains adopt ultrastable helical conformations. Macromolecules 2011, 44, 6641−6644. doi: 10.1021/ma201678r

    22. [22]

      Wang, Y.; Zheng, M.; Meng, F.; Zhang, J.; Peng, R.; Zhong, Z. Branched polyethylenimine derivatives with reductively cleavable periphery for safe and efficient in vitro gene transfer. Biomacromolecules 2011, 12, 1032−1040. doi: 10.1021/bm101364f

    23. [23]

      Lu, H.; Wang, J.; Bai, Y.; Lang, J. W.; Liu, S.; Lin, Y.; Cheng, J. Ionic polypeptides with unusual helical stability. Nat. Commun. 2011, 2, 206. doi: 10.1038/ncomms1209

    24. [24]

      Alonso, M. M.; Palacios, M.; Puertas, F. Compatibility between polycarboxylate-based admixtures and blended-cement pastes. Cem. Concr. Compos. 2013, 35, 151−162. doi: 10.1016/j.cemconcomp.2012.08.020

    25. [25]

      Malferrari, D.; Fermani, S.; Galletti, P.; Goisis, M.; Tagliavini, E.; Falini, G. Shaping calcite crystals by means of comb polyelectrolytes having neutral hydrophilic teeth. Langmuir 2013, 29, 1938−1947. doi: 10.1021/la304618f

    26. [26]

      Reese, J.; Plank, J. Adsorption of polyelectrolytes on calcium carbonate-which thermodynamic parameters are driving this process. J. Am. Ceram. Soc. 2011, 94, 3515−3522. doi: 10.1111/j.1551-2916.2011.04682.x

    27. [27]

      Yamada, K.; Takahashi, T.; Hanehara, S.; Matsuhisa, M. Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer. Cem. Concr. Res. 2000, 30, 197−207. doi: 10.1016/S0008-8846(99)00230-6

    28. [28]

      Ran, Q.; Qiao, M.; Liu, J. Influence of Ca2+ on the performance of poly(acrylic acid)-g-poly(ethylene glycol) comb-like copolymers in cement suspensions. Iran Polym. J. 2014, 23, 663−669. doi: 10.1007/s13726-014-0259-2

    29. [29]

      Shu, X.; Ran, Q.; Liu, J.; Zhao, H.; Zhang, Q.; Wang, X.; Yang, Y.; Liu, J. Tailoring the solution conformation of polycarboxylate superplasticizer toward the improvement of dispersing performance in cement paste. Constr. Build. Mater 2016, 116, 289−298. doi: 10.1016/j.conbuildmat.2016.04.127

    30. [30]

      Flatt, J. F.; Schober, I.; Raphael, E.; Plassard, C.; Lesniewska, E. Conformation of adsorbed comb copolymer dispersants. Langmuir 2008, 25, 845−855. doi: 10.1021/la801410e

    31. [31]

      Ran, Q.; Somasundaran, P.; Miao, C.; Liu, J; Wu, S.; Shen, J. Effect of the length of the side chains of comb-like copolymer dispersants on dispersion and rheological properties of concentrated cement suspensions. J. Colloid Interface Sci. 2009, 336, 624−633. doi: 10.1016/j.jcis.2009.04.057

    32. [32]

      Winnefeld, F.; Becker, S.; Pakusch, J.; Götz, T. Effects of the molecular architecture of comb-shaped superplasticizers on their performance in cementitious systems. Cem. Concr. Compos. 2007, 29, 251−262. doi: 10.1016/j.cemconcomp.2006.12.006

    33. [33]

      Kirby, G. H.; Lewis, J. A. Comb polymer architecture effects on the rheological property evolution of concentrated cement suspensions. J. Am. Ceram. Soc. 2004, 87, 1643−1652. doi: 10.1111/j.1551-2916.2004.01643.x

    34. [34]

      Sappidi, P.; Muralidharan, S. S.; Natarajan, U. Conformations and hydration structure of hydrophobic polyelectrolyte atactic poly(ethac rylic acid) in dilute aqueous solution as a function of neutralization. Mol. Simul. 2014, 40, 295−305. doi: 10.1080/08927022.2013.803551

    35. [35]

      Tong, K. F.; Song, X. F.; Sun, S. Y.; Xu, Y. X.; Yu, J. G. Molecular dynamics study of linear and comb-like polyelectrolytes in aqueous solution: effect of Ca2+ ions. Mol. Phys. 2014, 112, 2176−2183. doi: 10.1080/00268976.2014.893036

    36. [36]

      Zidar, J.; Lim, G. S.; Cheong, D. W.; Klähn, M. Protein-like dynamics of polycarbonate polymers in water. J. Phys. Chem. B 2014, 119, 316−329.

    37. [37]

      Sulatha, M. S.; Natarajan, U. Molecular dynamics simulations of PAA-PMA polyelectrolyte copolymers in dilute aqueous solution: chain conformations and hydration properties. Ind. Eng. Chem. Res. 2012, 51, 10833−10839. doi: 10.1021/ie301244n

    38. [38]

      Sulatha, M. S.; Natarajan, U. Origin of the difference in structural behavior of poly(acrylic acid) and poly(methacrylic acid) in aqueous solution discerned by explicit-solvent explicit-ion MD simulations. Ind. Eng. Chem. Res. 2011, 50, 11785−11796. doi: 10.1021/ie2014845

    39. [39]

      Maskey, S.; Pierce, F.; Perahia, D.; Grest, G. S. Conformational study of a single molecule of poly para phenylene ethynylenes in dilute solutions. J. Chem. Phys. 2011, 134, 244906−244914. doi: 10.1063/1.3604820

    40. [40]

      Tribello, G. A.; Liew, C. C.; Parrinello, M. Binding of calcium and carbonate to polyacrylates. J. Phys. Chem. B 2009, 113, 7081−7085. doi: 10.1021/jp900283d

    41. [41]

      Ju, S. P.; Lee, W. J.; Huang, C. I.; Cheng, W. Z.; Chung, Y. T. Structure and dynamics of water surrounding the poly(methacrylic acid): a molecular dynamics study. J. Chem. Phys. 2007, 126, 224901−224912. doi: 10.1063/1.2743963

    42. [42]

      Molnar, F.; Rieger, J. “Like-charge attraction” between anionic polyelectrolytes: molecular dynamics simulations. Langmuir 2005, 21, 786−789. doi: 10.1021/la048057c

    43. [43]

      Hehmeyer, O. J.; Arya, G.; Panagiotopoulos, A. Z.; Szleifer, I. Monte Carlo simulation and molecular theory of tethered polyelectrolytes. J. Chem. Phys. 2007, 126, 244902. doi: 10.1063/1.2747600

    44. [44]

      Luque-Caballero, G.; Martín-Molina, A.; Quesada-Pérez, M. Polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent counterions: a Monte Carlo simulation study. J. Chem. Phys. 2014, 140, 174701. doi: 10.1063/1.4872263

    45. [45]

      Yu, S.; Larson, R. G. Monte-Carlo simulations of PAMAM dendrimer-DNA interactions. Soft Matter 2014, 10, 5325−5336. doi: 10.1039/C4SM00452C

    46. [46]

      Turesson, M.; Labbez, C.; Nonat, A. Calcium mediated polyelectrolyte adsorption on like-charged surfaces. Langmuir 2011, 27, 13572−13581. doi: 10.1021/la2030846

    47. [47]

      Chremos, A.; Douglas, J. F. Counter-ion distribution around flexible polyelectrolytes having different molecular architecture. Soft Matter 2016, 12, 2932−2941. doi: 10.1039/C5SM02873F

    48. [48]

      Ghelichi, M.; Qazvini, N. T. Self-organization of hydrophobic-capped triblock copolymers with a polyelectrolyte midblock: a coarse-grained molecular dynamics simulation study. Soft Matter 2016, 12, 4611−4620. doi: 10.1039/C6SM00414H

    49. [49]

      Ghelichi, M.; Eikerling, M. H. Conformational properties of comb-like polyelectrolytes: a coarse-grained MD study. J. Phys. Chem. B 2016, 120, 2859−2867. doi: 10.1021/acs.jpcb.6b00568

    50. [50]

      Turesson, M.; Nonat, A.; Labbez, C. Stability of negatively charged platelets in calcium-rich anionic copolymer solutions. Langmuir 2014, 30, 6713−6720. doi: 10.1021/la501228w

    51. [51]

      Liu, Z.; Shang, Y.; Feng, J.; Peng, C.; Liu, H.; Hu, Y. Effect of hydrophilicity or hydrophobicity of polyelectrolyte on the interaction between polyelectrolyte and surfactants: molecular dynamics simulations. J. Phys. Chem. B 2012, 116, 5516−5526. doi: 10.1021/jp212089d

    52. [52]

      Spaeth, J. R.; Kevrekidis, I. G.; Panagiotopoulos, A. Z. A comparison of implicit-and explicit-solvent simulations of self-assembly in block copolymer and solute systems. J. Chem. Phys. 2011, 134, 164902. doi: 10.1063/1.3580293

    53. [53]

      Reddy, G.; Yethiraj, A. Solvent effects in polyelectrolyte adsorption: computer simulations with explicit and implicit solvent. J. Chem. Phys. 2010, 132, 074903. doi: 10.1063/1.3319782

    54. [54]

      Košovan, P.; Limpouchová, Z.; Procházka, K. Conformational behavior of comb-like polyelectrolytes in selective solvent: computer simulation study. J. Phys. Chem. B 2007, 111, 8605−8611. doi: 10.1021/jp072894g

    55. [55]

      Hsiao, P. Y.; Luijten, E. Salt-induced collapse and reexpansion of highly charged flexible polyelectrolytes. Phys. Rev. Lett. 2006, 97, 148301−148305. doi: 10.1103/PhysRevLett.97.148301

    56. [56]

      Liao, Q.; Dobrynin, A. V.; Rubinstein, M. Molecular dynamics simulations of polyelectrolyte solutions: nonuniform stretching of chains and scaling behavior. Macromolecules 2003, 36, 3386−3398. doi: 10.1021/ma025995f

    57. [57]

      Wynveen, A.; Likos, C. N. Interactions between planar polyelectrolyte brushes: effects of stiffness and salt. Soft Matter 2010, 6, 163−171. doi: 10.1039/B919808C

    58. [58]

      Baratlo, M.; Fazli, H. Brushes of flexible, semiflexible, and rodlike diblock polyampholytes: molecular dynamics simulation and scaling analysis. Phys. Rev. E 2010, 81, 011801.

    59. [59]

      Baratlo, M.; Fazli, H. Molecular dynamics simulation of semiflexible polyampholyte brushes—the effect of charged monomers sequence. Eur. Phys. J. 2009, 29, 131−138.

    60. [60]

      Csajka, F. S.; Netz, R. R.; Seidel, C.; Joanny, J. F. Collapse of polyelectrolyte brushes: scaling theory and simulations. Eur. Phys. J. 2001, 4, 505−513.

    61. [61]

      Seidel, C. Strongly stretched polyelectrolyte brushes. Macromolecules 2003, 36, 2536−2543. doi: 10.1021/ma021428g

    62. [62]

      Merlitz, H.; He, G. L.; Wu, C. X.; Sommer, J. U. Nanoscale brushes: how to build a smart surface coating. Phys. Rev. Lett. 2009, 102, 115702. doi: 10.1103/PhysRevLett.102.115702

    63. [63]

      Merlitz, H.; He, G. L.; Wu, C. X.; Sommer, J. U. Surface instabilities of monodisperse and densely grafted polymer brushes. Macromolecules 2008, 41, 5070−5072. doi: 10.1021/ma800163a

    64. [64]

      Carrillo, J. M. Y.; Dobrynin, A. V. Morphologies of planar polyelectrolyte brushes in a poor solvent: molecular dynamics simulations and scaling analysis. Langmuir 2009, 25, 13158−13168. doi: 10.1021/la901839j

    65. [65]

      Guptha, V. S.; Hsiao, P. Y. Polyelectrolyte brushes in monovalent and multivalent salt solutions. Polymer 2014, 55, 2900−2912. doi: 10.1016/j.polymer.2014.04.035

    66. [66]

      Giraudeau, C.; D'Espinose De Lacaillerie, J. B.; Souguir, Z.; Nonat, Z.; Flatt, R. J. Surface and intercalation chemistry of polycarboxylate copolymers in cementitious systems. J. Am. Ceram. Soc. 2009, 92, 2471−2488. doi: 10.1111/j.1551-2916.2009.03413.x

    67. [67]

      Lee, H.; Venable, R. M.; MacKerell Jr, A. D.; Pastor, R. W. Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy. Biophys. J. 2008, 95, 1590−1599. doi: 10.1529/biophysj.108.133025

    68. [68]

      Gay, C.; Raphael, E. Comb-like polymers inside nanoscale pores. Adv. Colloid Inter. Sci. 2001, 94, 229−236. doi: 10.1016/S0001-8686(01)00062-8

    69. [69]

      Pedersen, J. S.; Sommer, C. Temperature dependence of the virial coefficients and the chi parameter in semi-dilute solutions of PEG. In Scattering methods and the properties of polymer materials. Berlin, Heidelberg, 2005, pp. 70−78.

    70. [70]

      Diehl, H. W.; Eisenriegler, E. Universal shape ratios for open and closed random walks: exact results for all d. J. Phys. A: Math. Gen. 1989, 22, L87. doi: 10.1088/0305-4470/22/3/005

    71. [71]

      Wang, Y.; Teraoka, I.; Hansen, F. Y.; Peters, G. H.; Hassager, O. Mean span dimensions of ideal polymer chains containing branches and rings. Macromolecules 2010, 44, 403−412.

    72. [72]

      Hsu, H. P.; Paul, W.; Binder, K. Standard definitions of persistence length do not describe the local “intrinsic” stiffness of real polymer chains. Macromolecules 2010, 43, 3094−3102. doi: 10.1021/ma902715e

    73. [73]

      Dobrynin, A. V. Electrostatic persistence length of semiflexible and flexible polyelectrolytes. Macromolecules 2005, 38, 9304−9314. doi: 10.1021/ma051353r

    74. [74]

      Dorfman, K. D.; King, S. B.; Olson, D. W.; Thomas, J. D. P.; Tree, D. R. Beyond gel electrophoresis: microfluidic separations, fluorescence burst analysis and DNA stretching. Chem. Rev. 2012, 113, 2584−2667. doi: 10.1021/cr3002142

    75. [75]

      Paturej, J.; Sheiko, S. S.; Panyukov, S.; Rubinstein, M. Molecular structure of bottlebrush polymers in melts. Sci. Adv. 2016, 2, 1601478−1601480. doi: 10.1126/sciadv.1601478

    76. [76]

      Birshtein, T. M.; Borisov, O. V.; Zhulina, Y. B.; Khokhlov, A. R; Yurasova, T. A. Conformations of comb-like macromolecules. Polym. Sci. 1987, 29, 1293−1300.

    77. [77]

      Feuz, L.; Leermakers, F. A. M.; Textor, M.; Borisov, O. Bending rigidity and induced persistence length of molecular bottle brushes: a self-consistent-field theory. Macromolecules 2005, 38, 8891−8901. doi: 10.1021/ma050871z

  • 加载中
  • PDF下载量:  0
  • 文章访问数:  1074
  • HTML全文浏览量:  16
  • 发布日期:  2020-04-01
  • 收稿日期:  2019-08-01
  • 修回日期:  2019-08-30
  • 网络出版日期:  2019-10-25
通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索